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Preface 

Introductory graduate-level analysis courses usually require an undergraduate course in 
real analysis or advanced calculus as a prerequisite. However, even students who have 
taken the appropriate prerequisites often feel inadequately prepared. The contents of the 
prior courses may not line up precisely with the expectations for analysis at a graduate 
level. Moreover, the material is challenging and lack of retention is a common issue. 
Finally, even students with a firm grasp on the concepts may not yet be adept at writing 
analysis proofs. The goal of this book is to help students bridge these gaps. 

In my experience of teaching first-year graduate courses on real or complex analysis, 
the most common issue in student preparation has to do with metric space theory. Most 
undergraduate analysis courses include an introduction to this topic, and so the key con-
cepts are usually familiar. But that level of exposure often turns out to be insufficient. 
Metric space topology is the underlying language of mathematical analysis, and to suc-
ceed at the graduate level students need to become proficient in this language. This book 
originated as a set of introductory notes that I wrote for those graduate courses, to help 
review the core concepts and provide additional practice in analysis proof-writing. 

The text covers most of the standard introductory analysis material from the beginning, 
starting with the completeness of the real numbers. However, the focus is placed on tools 
and concepts that I expect to need the most review, and the treatment of certain topics 
is rather streamlined. For example, single-variable calculus is covered only briefly in the 
final chapter, as a means to show off how certain metric space concepts and tools apply 
to this context. 

The book is intended for self-study, with exercises fully incorporated into the text. 
These exercises are often used to develop important results which serve as the basis for 
subsequent proofs and exercises. A complete set of solutions is provided at the end of 
the book, but I strongly recommended that readers take the time to think through these 
problems carefully and write out their own proofs before making use of the solutions. 
Simply reading proofs or looking up solutions contributes little to long-term understanding
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and retention. Proficiency in the language of analysis is built through active engagement, 
by puzzling over the concepts and working through strategies for proofs. 

Atlanta, USA 
February 2025 

David Borthwick 
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1Real Numbers 

The rational numbers are defined as the set of fractions 

. Q :=
{m
n

: m, n ∈ Z, n �= 0
}
.

The standard rules of arithmetic, along with the relations (.<,≤, >,≤) give.Q the structure 
of an ordered field. 

To describe quantities that come up in basic geometry, such as. π or.
√
2, we need to move 

beyond .Q and allow for irrational numbers. The term real number was coined by René 
Descartes in the 17th century to distinguish the true roots of a polynomial from imaginary 
roots such as .

√−1. The real numbers were assumed to include all rational and irrational 
values. The development of calculus relied on some intuitive assumptions for the real number 
system, which could not be formulated precisely because there was no systematic definition 
of a real number. 

This situation was not fully resolved until 1872, when Richard Dedekind and Georg 
Cantor independently developed constructions of . R as a completion of . Q. We will discuss 
both of these constructions in this chapter, without going into the full details. They turn out to 
lead to equivalent definitions, and in different ways they both reveal a fundamental property 
that distinguishes the real numbers from the rationals, called completeness. It turns out that 
this notion can be formulated in a great many equivalent ways, and we will encounter a few 
others in the course of this discussion. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
D. Borthwick, A Primer for Mathematical Analysis, Synthesis Lectures 
on Mathematics & Statistics, https://doi.org/10.1007/978-3-031-91713-4_1 
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2 1 Real Numbers

1.1 The Supremum Property 

Dedekind constructed real numbers as subsets of . Q. An element of .R is a rational cut, 
defined as a subset .A ⊂ Q such that . A and.Ac are non-empty, every element of . A is strictly 
less than every element of.Ac, and. A contains no greatest element. As illustrated Fig. 1.1, the  
idea is that the right endpoint of the cut represents a number. For .q ∈ Q the corresponding 
cut would be.{r ∈ Q : r < q}. Irrational numbers are be represented by cuts with no rational 
endpoint. For example, .

√
2 corresponds to .{r ∈ Q : r < 0 or r2 < 2}. 

To complete Dedekind’s construction, we need to define addition, multiplication, and 
ordering for cuts, and then check that the ordered field axioms are satisfied. For example, 
addition of cuts is given by adding elements: 

. A1 + A2 := {q1 + q2 : q1 ∈ A1, q2 ∈ A2}.

The ordering is also straightforward, defined by inclusion: 

.A1 ≤ A2 if A1 ⊂ A2. (1.1) 

Multiplication of cuts is a bit awkward, because the treatment of positive and negative num-
bers requires multiple cases. Nevertheless, one can easily make the appropriate definitions 
and check that the rules of arithmetic are satisfied. We not go into this level of detail here. 

One very convenient feature of the cut construction is that the real number system can 
be extended to include .±∞ by allowing cuts with one side empty. The empty cut . A = ∅
corresponds to .−∞, and the full cut .A = Q represents .+∞. This extends .R to define an 
ordered set called the extended real numbers , 

. R∞ := R ∪ {±∞}.

Since .∅ ⊂ A ⊂ Q for any cut . A, we see that 

. − ∞ < x < ∞ (1.2) 

for any.x ∈ R. Note that .R∞ is merely an ordered set and not a field. That is, the arithmetic 
of .R does not extend because expressions such as .∞ − ∞ or .0 · ∞ cannot be consistent 
defined. 

Dedekind’s approach to the real numbers naturally leads to a completeness property 
expressed in terms of the ordering. An extended real number .β ∈ R∞ is called an upper 

Fig. 1.1 A rational cut .A ⊂ Q representing a real number.x
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bound for a set .E ⊂ R if .x ≤ β for all .x ∈ E . The set .E has a supremum (or least upper 
bound) .α ∈ R∞ if .α ∈ R∞ is an upper bound for .E such that every other upper bound . β
satisfies .β ≥ α. If it exists, the supremum of .E is clearly unique and is written 

. α = sup E .

By (1.2),.sup E = ∞means that. E is not bounded above by a real number, and. sup E = −∞
if and only if .E is empty. 

The supremum of a set is easily obtained by taking the union of the corresponding cuts. 
If a point .x ∈ R is represented by the cut .Ax ⊂ Q, then for .E ⊂ R we set 

. sup E :=
⋃
x∈E

Ax . (1.3) 

One must check that the union on the right qualifies as a cut, but this is straightforward. 
Because the ordering is defined by inclusion, one can easily verify that (1.3) has the properties 
that characterize .sup E . This definition applies to any subset . E , which yields the following 
fundamental result: 

Theorem 1.1 (supremum property) Every subset of . R has a supremum in .R∞. 

Since we are not going into the full details of the construction, we will accept the result 
of Theorem 1.1 an axiom. An ordered field with the supremum property is called complete, 
and it turns out that .R is uniquely characterized by this description. That is, any ordered 
field extension of .Q with the supremum property is isomorphic to . R. 

The reverse of the supremum is the infimum , or (greatest lower bound). For a set.E ⊂ R, 
the value .α = inf E exists if .E has a lower bound .α ∈ R∞ such that every lower bound . β

satisfies.β ≤ α. Since the reflection.x �→ −x interchanges upper bounds with lower bounds, 
Theorem 1.1 implies also that every subset of .R has an infimum in .R∞. The statement 
.inf E = −∞ means .E not bounded below by a real number, and .inf E = ∞ if and only if 
.E is empty. 

If .sup E ∈ E then we say that .E has a maximum element and use the notation . max E
in place of .sup E to signify this. Similarly, if .inf E ∈ E then .E has a minimum element 
denoted by .min E . 

The Archimedean property of . R is the statement that the set of integers . Z does not have 
a real upper bound. Because we are used to picturing the real numbers as a line in which the 
integers are embedded, this might seem to be an obvious fact. However, the Archimedean 
property does not follow from the ordered field axioms alone. (For example, the ordered 
field of rational functions over .R is not Archimedean.) The point we want to make here 
is that the Archimedean property follows from the supremum property, so that Dedekind’s 
definition of . R agrees with our intuitive picture of the number line.
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Theorem 1.2 (Archimedean property) Given .x ∈ R, there exists .n ∈ Z such that .n > x. 

Proof Assume, for the sake of contradiction, that .supZ = a < ∞. By the definition of the 
supremum,.a − 1 is not an upper bound for . Z, and hence there exists some.k ∈ Z such that 
.k > a − 1. But then .k + 1 > a, which contradicts the fact that . a is an upper bound for the 
integers. �

As a corollary, Theorem 1.2 implies that for any real .ε > 0 there exists .n ∈ N such that 

. 
1

n
< ε

(since .1/ε would be an upper bound for . Z if this were false). We can extend this result to 
derive the following: 

Theorem 1.3 Given .x, y ∈ R with .x < y, there exists .q ∈ Q such that .x < q < y. 

Proof For .x < y the Archimedean property allows us to choose .n ∈ N so that 

. 
1

n
< y − x .

Let 
. m = inf{k ∈ Z : k > nx},

and observe that the set.{k > nx} is not empty, by the Archimedean principle, but is bounded 
below. Therefore .m is a finite integer. Since .nx + 1 < ny, .m satisfies 

. nx < m < ny.

Setting .q = m/n yields the result. �

We conclude this section with a review of the basic terminology of intervals. An interval 
. I is defined as a convex subset of. R, which means that if.x, y ∈ I then.t ∈ I for every point 
.x ≤ t ≤ y. The empty set and the single point .{x} qualify as intervals by default. Given a 
non-empty interval . I we can associate endpoints 

. α = inf I , β = sup I .

It follows from the definitions that.x ∈ I for all .α < x < β. Real endpoints may or may not 
be included in. I , and infinite endpoints are automatically excluded. The interval is bounded 
if both endpoints are real. 

An interval is said to be open if it is either empty or does not include either endpoint. 
The exclusion is indicated by parentheses,
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. (α,β) := {x ∈ R : α < x < β}.

An interval is closed if it is either empty or includes its real endpoints. Square brackets are 
used to indicate this, 

. [a, b] := {x ∈ R : a ≤ x ≤ b}.
The infinite intervals .(−∞, b], .[a,∞), and  .(−∞,∞) are also closed by this definition. 
Note that . ∅ and . R are classified as both open and closed. 

1.2 Sequences 

A sequence in. R is an ordered list of numbers.(x1, x2, x3, . . . ). We will write this in compact 
form as .(xn)n∈N, or simply .(xn). We say that .(xn) converges to a limit .y ∈ R if for every 
.ε > 0, 

.|xn − y| < ε for all but finitely many n. (1.4) 

This is notated as 
. lim
n→∞ xn = y,

or simply.xn → y when there is no ambiguity in the index. The statement (1.4) can be made 
more explicit by saying that for each.ε > 0 there exists.N so that.|xn − y| < ε for all.n ≥ N . 

Example 1.4 The sequence.n1/n plotted in Fig. 1.2 appears to be converging to. 1. To verify  
this, set .xn = n1/n − 1 and note that .xn ≥ 0 and 

.(1 + xn)
n = n. (1.5) 

Extracting the quadratic term from the binomial expansion of .(1 + xn)n then gives an esti-
mate 

Fig. 1.2 A plot of the sequence.n1/n
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. 
n(n − 1)

2
x2n ≤ n.

This yields the bound 

.

∣∣n1/n − 1
∣∣ ≤

√
2

n − 1
. (1.6) 

Given .ε > 0, if we choose .N > 1 + 2/ε2, then .n ≥ N implies .|xn| < ε. ♦ 

It makes no difference to the definition (1.4) if the inequality .|xn − y| ≤ ε is used in 
place of the strict inequality, because the statement needs to hold for all .ε > 0. By the  
same reasoning, we can replace . ε with some other expression, such as . 2ε, as long as it is 
immediately clear that the estimate can be made arbitrarily small through our choice of . N . 

Because the definition of the limit is a conditional statement, it is worth considering 
explicitly what it means for a limit to fail to exist. The condition “for every .ε > 0” fails if 
there is at least one exceptional case. Thus,.xn �→ y means that there is at least one value of 
.ε > 0 such that .|xn − y| < ε for only finitely many . n. 

Some basic but essential properties of sequence limits are highlighted in the following: 

Exercise 1.5 Show that a sequence .(xn) that converges in .R is bounded, meaning there 
exists .M so that .|xn| ≤ M for all . n. 

Exercise 1.6 If .xn → a and .yn → b in . R, prove that 

. lim
n→∞(xn + yn) = a + b and lim

n→∞(xn yn) = ab.

So far we have been talking only about finite limits. Sequences that do not converge in 
. R may still have a meaningful limit in the extended real numbers .R∞. We write 

. lim
n→∞ xn = ∞,

or .xn → ∞, if for each .m ∈ R all but finitely many points of the sequence satisfy .xn ≥ m. 
Similarly, we write 

. lim
n→∞ xn = −∞,

or.xn → −∞, if for each.m ∈ R all but finitely many points satisfy.xn ≤ m. These extended 
definitions are quite useful, but we do need to be careful with our use of the term convergent. 
Normally, a sequence is called convergent only if the limit is finite. However, this usage may 
vary depending on the context. When there is a possibility for confusion, we will describe 
the limits as being “in . R” or “in .R∞.” 

Exercise 1.7 Let . A be a non-empty subset of . R. Prove that there exists a sequence .(xn) in 
. A with .xn → sup A. (The same results holds for the infimum.)
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The algebraic properties of Exercise 1.6 do not apply to extended limits, because arith-
metic is restricted to . R. We can apply ordering relations to extended limits, however. 

Exercise 1.8 Suppose that .(xn) and .(yn) are sequences in .R with limits in .R∞, and  that  
.xn ≤ yn for all . n. Prove that 

. lim xn ≤ lim yn .

Note that the results of Exercises 1.6 and 1.8 require that the limits are already known 
to exist. This creates a potential pitfall in proofs where the goal is to prove existence of a 
limit. We need to be careful not to assume this existence prematurely. 

Example 1.9 Consider the Fibonacci sequence.0, 1, 1, 2, 3, 5, . . . , which is defined recur-
sively by setting .x0 = 0, .x1 = 1, and  

. xn = xn−1 + xn−2.

It should be clear that .xn → ∞. However, if we simply apply the rules from Exercise 1.6, 
without checking existence, we would deduce that 

. lim xn = 2 lim xn .

This leads to the nonsensical conclusion that .lim xn = 0. ♦ 

1.2.1 Monotone Sequences 

Real limits are relatively easy to handle if we can avoid oscillations. The term for a sequence 
without oscillation is monotone. A monotone sequence.(xn) is either increasing (.xn ≤ xn+1) 
or decreasing (.xn ≥ xn+1). 

Theorem 1.10 A monotone sequence in . R has a limit in .R∞. 

Proof It suffices to consider the increasing case, since the same argument can be applied to 
a decreasing sequence by replacing .xn by .−xn . For an increasing sequence .(xn), we claim 
that the limit is given by 

. α := sup {x1, x2, . . . }.
An example is illustrated in Fig. 1.3. 

To see that .xn → α, suppose first that .α ∈ R. For .ε > 0, .α − ε is not a lower bound on 
.{xn}. Therefore.xN ≥ α − ε for some. N . Since the sequence is increasing and. α is an upper 
bound, we have 

.xn ∈ [α − ε,α] for all n ≥ N .
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Fig. 1.3 An increasing sequence.(xn) converging to . α = sup xn

This shows that .xn → α in the finite case. 
Since .{xn} is not empty, .α �= −∞ and the other possibility to consider is .α = ∞. In  

this case, for any .m ∈ R we know that .m is not an upper bound for .{xn}. This implies that 
.xN ≥ m for some. N , and hence .xn ≥ m for all .n ≥ N since the sequence is increasing. �

Example 1.11 Consider a decimal expansion.0.d1d2d3, . . . , with digits.d j ∈ {0, 1, . . . , 9}. 
This corresponds to a sequence of rational numbers given by 

. xn = d1
10

+ d2
100

+ · · · + dn
10n

.

The sequence .(xn) is increasing because the terms in the sum are positive. Therefore . x =
lim xn exists and is contained in .[0, 1] since .0 ≤ xn ≤ 1 for all . n. In other words, each 
decimal expansion represents a real number. ♦ 

Example 1.12 Newton’s approximation method gives a rational approximation to . 
√
2

defined by the sequence .2, 3
2 ,

17
12 , . . . . This is defined iteratively by setting .x1 = 2 and 

.xn+1 = x2n + 2

2xn
. (1.7) 

Using induction, we can deduce from (1.7) that 

. 

√
2 ≤ xn ≤ 2

for all . n, and also that .(xn) is a decreasing sequence. Theorem 1.10 implies that the limit 
exists in . R. Taking the limit on both sides of (1.7) shows  that .lim xn = √

2. ♦ 

The monotone sequence theorem is actually another version of the completeness property 
for. R, equivalent to the supremum property. We can use it to deduce the following result for 
nested sequences of intervals, which is yet another form of completeness. We will see this 
generalized to metric spaces later on in Sect. 3.4.
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Lemma 1.13 Suppose .In is bounded, closed, nonempty interval for each . n, and that these 
intervals form a nested sequence, 

. I1 ⊂ I2 ⊂ I3 ⊂ . . . .

Then the intersection .∩In is not empty. 

Proof If we write.In = [an, bn], then the nesting property means that.(an) is increasing and 
.(bn) is decreasing. These sequences are bounded by .[a1, b1], so they have real limits 

. a = lim an, b = lim bn .

Since .am ≤ bn for all .m and . n, it follows from Exercise 1.8 that .a ≤ b and .[a, b] ∈ In for 
all . n. �

As an example of how Lemma 1.13 can be used, let us present a proof of the uncountability 
of the real numbers. Recall that an infinite set .E is countable if there exists a bijection 
.E ↔ N. This is equivalent to saying that the elements can be listed as a sequence, 

. E = {x1, x2, . . . }.

An infinite set that cannot be listed as a sequence is called uncountable . 

Theorem 1.14 The set . R is uncountable. 

Proof Suppose, for the sake of contradiction, that . R is countable, so that we can write 

.R = {x1, x2, . . . }. (1.8) 

Choose some closed interval .I1 such that .x1 /∈ I1. Then find a closed interval .I2 ⊂ I1 such 
that .x2 /∈ I2, and so on. Continuing this process yields a nested sequence 

. I1 ⊃ I2 ⊃ I3 ⊃ . . . .

The intersection .∩In is not empty by Lemma 1.13. However, since .xk /∈ Ik for each . k, this 
contradicts (1.8). �

1.2.2 Upper and Lower Limits 

A typical strategy for proving that.xn → y involves estimating the difference.|xn − y|. Such 
estimates typically require algebraic operations and comparisons. Thus the potential pitfall,
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as noted in the discussion of Exercises 1.6 and 1.8, is that we can only apply algebraic 
operations and ordering relations to the limits if we already know that the limit exists. 

To work around this we use upper and lower limits, whose existence is guaranteed. Given 
a real sequence .(xn), for each .n ∈ N define 

. yn = sup{xk : k ≥ n}.

Then.yn also serves an upper bound on.sup{xk : k ≥ n + 1}. This implies.yn ≥ yn+1, so the  
sequence is decreasing. By Theorem 1.10, we can take the limit in .R∞ to define 

. lim sup xn := lim
n→∞ yn .

The definition could be written more succinctly as 

. lim sup xn := lim
n→∞

(
sup
k≥n

xk

)
,

(which explains the terminology). Similarly, we define 

. lim inf xn := lim
n→∞

(
inf
k≥n

xk

)
.

Note that the infimum of a set is always less than the supremum, and so 

. lim inf xn ≤ lim sup xn (1.9) 

by Exercise 1.8. 

Example 1.15 Consider the alternating sequence 

. xn = (−1)n
n + 1

n
,

illustrated in Fig. 1.4. For all . n we can estimate 

. 1 ≤ sup
k≥n

xk ≤ 1 + 1

n
,

which gives .lim sup xn = 1. Similarly, .lim inf xn = −1. ♦ 

The .lim sup and .lim inf do not provide direct bounds on elements of the sequence. For 
example, in the sequence plotted in Fig. 1.4, infinitely points lie above the .lim sup and 
below the .lim inf, with none in between. In order to produce inequalities related to the 
upper and lower limits, we must move slightly above or below these values. The following 
characterization makes this notion explicit:
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Fig. 1.4 The upper and lower limits of the sequence from Example 1.15 

Exercise 1.16 For a real sequence .(xn), show that .lim sup xn is equal to the unique value 
.α ∈ R∞ satisfying, for all .c ∈ R: 

(i) If .c > α then .xn > c for only finitely many . n. 
(ii) If .c < α, then .xn > c for infinitely many . n. 

(These conditions are reversed for .lim inf xn .) 

This formulation is the key to many applications of.lim sup and.lim inf. For example, we 
can easily derive the following fundamental result: 

Lemma 1.17 A real sequence .(xn) has a limit .α ∈ R∞ if and only if 

. α = lim inf xn = lim sup xn

Proof If both values .a = lim inf xn and .b = lim sup xn are real, then we an paraphrase the 
result of Exercise 1.16 in terms of an arbitrary .ε > 0: 

(i’) The interval .[a − ε, b + ε] contains all but finitely many . xn . 
(ii”) Infinitely many .xn lie outside .(a + ε, b − ε). 

If .a = b then (i. ′) is equivalent to the statement that .xn → a, while (ii. ′) is vacuous.  And if  
.a < b then (ii. ′) shows that no limit exists. 

The infinite cases follow directly from Exercise 1.16. For example, if . lim sup xn = −∞
then (i) says that for all .c ∈ R, .xn > c for only finitely many . n. This is the same as the 
definition of .xn → −∞. �

Upper and lower limits are particularly useful for estimates because they exist for any 
sequence and satisfy ordering relations.
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Exercise 1.18 If .(xn) and .(yn) are sequences in . R with .xn ≤ yn for all . n, show that 

. lim inf xn ≤ lim inf yn, lim sup xn ≤ lim sup yn . (1.10) 

We need to be a bit more careful with algebraic relations for.lim sup and.lim inf, because 
the results are one-sided. 

Exercise 1.19 For bounded real sequences .(xn) and .(yn), prove  that  

. lim sup (xn + yn) ≤ lim sup xn + lim sup yn . (1.11) 

(The reverse inequality holds for .lim inf.) 

It is not difficult to see that equality will hold in (1.11) when at least one of the sequences 
has a limit. Strict inequality is certainly possible, though. For example, if .xn = (−1)n and 
.yn = (−1)n+1, then .lim sup xn = lim sup yn = 1, whereas .xn + yn = 0 for all . n, 

The .lim sup of a sequence of products may not be related to the .lim sup of the factors in 
general. However, when one of the factor sequences converges to a finite positive limit, then 
the limit can be extracted: 

Exercise 1.20 Let .(xn) and.(xn) be bounded positive sequences and suppose that .xn → a. 
Prove that 

. lim sup (xn yn) = a lim sup yn .

(The same result holds for .lim inf.) 

A subsequence of .(xn) is a new sequence of the form .(xnk )k∈N, where  .nk ∈ N with 
.nk < nk+1. If the sequence has a limit, then it is clear that any subsequence will approach 
the same limit. Furthermore, whether or not the full sequence has a limit, we can always 
find subsequences that do. 

Exercise 1.21 Prove that a real sequence .(xk) has a subsequence such that 

. lim
n→∞ xkn = lim sup xk .

(The same result holds for .lim inf xk , of course.) 

1.3 Cauchy Sequences and Completeness 

The definition of completeness in terms of the supremum property applies to any ordered 
field, but as we remarked after Theorem 1.1, the real number system is the only ordered field 
with this property. This definition of completeness thus has an extremely limited scope.
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Fig.1.5 A sequence is Cauchy if all but finitely points are contained in an interval of arbitrarily small 
width. ε

We have already remarked on some other notions of completeness that yield an equivalent 
axiom for the real numbers. In this section we will discuss yet another, the concept of metric 
completeness. This property was first adopted as an axiom by Augustin-Louis Cauchy in 
the early 19th century, as part of his work on rigorous foundations of calculus. 

A sequence.(xn) in. R is said to be Cauchy if for every.ε > 0, all but finitely many points 
of the sequence lie within an interval of width . ε. An equivalent way to say this is that for 
each .ε > 0 there exists .N so that 

. |xn − xm | < ε for all n,m ≥ N .

This Cauchy condition is illustrated in Fig. 1.5. This sounds similar to the definition of a limit, 
but the crucial point here is that no limiting value is specified. If.xn → y, then we could pick 
.(y − ε

2 , y + ε
2 ) for the interval required by the Cauchy condition. This observation yields 

the following: 

Lemma 1.22 A sequence that converges in . R is Cauchy. 

A space is complete in the metric sense if all Cauchy sequences converge. We will 
demonstrate that . R has this property as a consequence of the existence of upper and lower 
limits. 

Theorem 1.23 All Cauchy sequences in . R are convergent. 

Proof Suppose.(xn) is a Cauchy sequence in. R. Given.ε > 0, the fact that there is an interval 
of width . ε that contains all but finitely many .xn shows that the sequence is bounded, with 

. lim sup xn − lim inf xn ≤ ε.

Since . ε was arbitrary, we conclude that .lim sup xn = lim inf xn , and convergence follows 
from Lemma 1.17. �
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It is easy to see that .Q is not complete in the metric sense. For example, the decimal 
expansions discussed in Example 1.11 clearly correspond to Cauchy sequences in. Q, because 
decimal expansions which agree out to the. nth decimal place yield numbers that differ by at 
most .101−n . These sequences do not converge.Q if the decimal expansion is non-repeating. 

Cantor’s construction of real numbers is explicitly based on Cauchy sequences. A real 
number is defined as an equivalence class of Cauchy sequences in. Q, under the equivalence 
relation 

. (xn) ∼ (yn) if lim
n→∞(xn − yn) = 0.

This approach can be generalized to the concept of metric space completion, which we will 
discuss later in Sect. 3.3.1. 

The main distinction between this construction and Dedekind’s is that metric complete-
ness is essentially built into Cantor’s approach, just as the supremum property is an imme-
diate consequence of Dedekind’s. Although we have not gone into the details of either 
construction, we will at least show that the axioms are equivalent. 

Theorem 1.24 For . R the supremum property is equivalent to metric completeness. 

Proof The forward implication was already shown in Theorem 1.23, so we assume  that. R is 
an ordered field in which Cauchy sequences in are convergent, but for which the supremum 
property is not yet established. For .E ⊂ R our goal is to prove that .sup E exists in .R∞. 
The infinite cases are straightforward. If . E is empty then.sup E = −∞ and if . E has no real 
upper bound then .sup E = ∞. This leaves the case where .E is not empty and has an upper 
bound in . R. 

Under these assumptions on . E , we claim that for each .ε > 0 there exists a point . x ∈ E
such that.x + ε is an upper bound for. E . To see this, let. m be an upper bound on. E , and pick 
a starting point.x1 ∈ E . If.x1 + ε is an upper bound then we are done. Otherwise, there exists 
some point .x2 ∈ E with .x2 > x1 + ε. We can continue this process until we find . xk ∈ E
such that .xk + ε is an upper bound. This will happen in at most .k ≤ (m − x1)/ε steps. 

With the claim proven, we can now show that a set .E that is not empty and bounded 
above has a supremum. For each . n, use the claim above to find .xn ∈ E such that . xn + 1/n
is an upper bound for . E . For any two points .xn and .xm in the sequence, 

. xn ≤ xm + 1

m
and xm ≤ xn + 1

n
.

For all .m, n ≥ N this implies that 

. |xn − xm | ≤ 1

N
,

and thus the sequence is Cauchy. By hypothesis .(xn) converges in . R. 
The final step is to show that .a := lim xn is the supremum of . E . If .x ∈ E , then
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. x ≤ xn + 1

n

for all . n. Since.xn → a and.1/n → 0 as.n → ∞, this implies that .x ≤ a. Therefore. a is an 
upper bound for. E . If .ε > 0, then.xn > a − ε for all but finitely many. n, and so.a − ε is not 
an upper bound for . E . This proves that .sup E exists and is equal to . a. �

We can now verify the comment made earlier about the monotone sequence theorem. The 
convergence of monotone sequences implies the existence of the .lim sup and .lim inf, and  
we used that fact to establish metric completeness. Theorem 1.24 shows that the supremum 
property follows from this. 

To conclude this section, let us consider one final version of the completeness axiom, 
related to subsequences. 

Theorem 1.25 (Bolzano-Weierstrass) A bounded sequence in . R has a convergent subse-
quence. 

This follows immediately from Exercise 1.21, since a bounded sequence has a finite 
.lim sup. We leave it to the reader to check the equivalence to metric completeness. 

Exercise 1.26 Prove the converse of Theorem 3.26, i.e., the Bolzano-Weierstrass property 
implies that all Cauchy sequences are convergent.
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Algebraic operations such as sums involve only a finite number of terms by definition. The 
term series refers to the limiting case where the number of summands is taken to infinity. 
The goal of this chapter is to develop some of the basic theory of numerical series. We start 
with a brief introduction to the field of complex numbers, since that is the natural context 
for many of the fundamental results. 

2.1 Complex Numbers and Sequences 

The field of complex numbers is defined by adjoining to .R an element . i which satisfies 
.i2 = −1. In terms of the additive structure this means that .C is a vector space over . R, 
spanned by . 1 and . i : 

. C := {x + iy : x, y ∈ R}.
Multiplication is extended to. C by further assuming that. i commutes with all other elements 
and satisfies the distributive law. This gives the multiplication rule: 

. (a + ib)(c + id) := (ac − bd) + i(ad + bc).

With these definitions, .C is an algebra containing .R as a subalgebra, with additive unit . 0
and multiplicative unit . 1. To establish that . C is a field, it remains to check the existence of 
multiplicative inverses, which we will take care of below. 

The real and imaginary parts of a complex number .z = x + iy are notated as 

. Re z := x, Im z := y

and the conjugate is defined as 
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. z := x − iy.

The absolute value is extended from. R to . C by defining 

.|z| := √
zz =

√
x2 + y2, (2.1) 

Note that this agrees with the Euclidean norm on .R2. It follows that the complex absolute 
value is positive definite and satisfies the triangle inequality, 

. |z + w| ≤ |z| + |w|

for all .z, w ∈ C. Moreover, (2.1) implies that the absolute value is multiplicative, 

. |zw| = |z||w|,

just as in the real case. 
To complete the description of. C as a field, the fact that.|z|2 = zz gives a simple formula 

for the multiplicative inverse, 

. z−1 = z

|z|2
for .z �= 0. It is straightforward to verify that the field axioms are satisfied, and we will not 
go into those details here. 

The complex number field cannot be ordered, because .i2 = −1 contradicts the ordered 
field axioms. Hence, only real numbers can appear in inequalities. This an assumption that 
is often made implicitly. For example, use of the phrase “given .ε > 0” implies that .ε ∈ R. 

Sequential limits in. C are defined by using the absolute value to measure distance between 
points, just as for real numbers. That is, .zk → z means that for every .ε > 0, there exists . N
so that 

. |zk − z| < ε for all k ≥ N .

This is related to real convergence by the following: 

Exercise 2.1 A complex sequence converges if and only if its sequences of real and imag-
inary parts converge separately in . R. ♦ 

By Exercise 2.1, the algebraic properties of sequential limits noted for . R in Exercise 1.6 
carry over directly to . C. 

Lemma 2.2 Suppose .(wk) and .(zk) are convergent sequences in .C with .wk → w and 
.zk → z. Then 

. lim (wk + zk) = w + z and limwk zk = wz.

A complex sequence .(zn) is Cauchy if for every .ε > 0, there exists .N such that
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. |zn − zm | < ε for all n,m ≥ N .

As in the real case, the triangle inequality implies that convergent sequences are Cauchy. 
The converse also holds, by the following extension of Theorem 1.23. 

Exercise 2.3 Prove that all Cauchy sequences in . C are convergent. 

2.2 Series 

Formally, a complex series is an infinite sum 

. z0 + z1 + z2 + . . . ,

with each .zk ∈ C. The  series  converges if the sequence of partial sums given by 

. sn := z0 + · · · + zn

has a limit in . C. In this case we define 

. 

∞∑
k=0

zk := lim
n→∞ sn .

The series is said to diverge if the sequence of partial sums has no limit. For a real series, 
we can defined extended limits .

∑
xn = ±∞, but these infinite cases are still classified as 

divergent series. 
Because a series.

∑
zk has two associated sequences, namely the sequence of partial sums 

.(sn) and the sequence of terms .(zk), when discussing convergence it is important to keep 
these straight. 

Exercise 2.4 Prove that if .
∑

zk converges, then .lim zk = 0. 

The converse of the result of Exercise 2.4 is false, as demonstrated by the following: 

Example 2.5 Consider the harmonic series 

. 1 + 1

2
+ 1

3
+ · · · .

We can group the terms by powers of two to estimate the partial sums:
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. s2m = 1 + 1

2
+

(
1

3
+ 1

4

)
+ · · · +

(
1

2m−1 + 1
+ · · · + 1

2m

)

≤ 1 + 1

2
+ · · · + 1

2︸ ︷︷ ︸
m

This implies that .s2m → ∞, and therefore .sn → ∞, since the sequence of partial sums is 
increasing. The harmonic series is thus divergent, with 

. 

∞∑
k=1

1

k
= ∞.

♦ 

One of the most useful tools for the analysis of series is a particular case that can be 
evaluated in closed form: 

Example 2.6 For the geometric series 

. 1 + z + z2 + . . . ,

divergence is clear if .|z| ≥ 1, by Exercise  2.6. To establish convergence for .|z| < 1, the  
partial sums can be computed using the polynomial identity 

. (1 − z)(1 + z + · · · + zn) = 1 − zn+1.

For .z �= 1 this gives 

. 

n∑
k=0

zk = 1 − zn+1

1 − z
.

Since .|z|n → 0 as .n → ∞ for .|z| < 1, the series converges to 

.

∞∑
k=0

zk = 1

1 − z
. (2.2) 

♦ 

We can immediately derive some basic algebraic properties of series from the properties 
established for sequences in Lemma 2.2. 

Lemma 2.7 If .
∑

zk and .
∑

wk are convergent series, then 

.

∑
(zk + wk) =

∑
zk +

∑
wk,
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and, for .c ∈ C, 
. 

∑
czk = c

∑
zk .

Note that multiplication of series is not included in Lemma 2.7. The distribution of terms 
in a product of two series results in a double summation that is not well-defined without 
some extra assumptions. (See Exercise 2.13 below.) 

By the completeness property of Exercise 2.3, a series converges in . C if and only if the 
sequence of partial sums is Cauchy. This gives the following criterion: 

Theorem 2.8 A complex series .
∑

zk converges if and only if for each .ε > 0 there exists 
.N ∈ N such that 

. |zn + · · · + zm | ≤ ε

for all .m ≥ n ≥ N. 

The monotone sequence theorem implies another series convergence result. For a series 
with real positive terms, the sequence of partial sums is increasing. Hence, Theorem 1.10 
yields the following corollary: 

Theorem 2.9 Let .
∑

ak be a real series with .ak ≥ 0 for all . k. Then .
∑

ak has a well-defined 
limit in .R∞ and converges in . R if its sequence of partial sums is bounded. 

2.3 Absolute Convergence 

A complex series .
∑

zk is said to converge absolutely if .
∑|zk | < ∞. The completeness of 

. C implies the following result: 

Exercise 2.10 Prove that an absolutely convergent complex series is convergent in . C. 

In fact, this property that absolute convergence of a series implies convergence is another 
equivalent form of the completeness axiom. 

Convergence that is not absolute is called conditional. The Cauchy criterion of 
Theorem 2.8 still applies to such cases, and this does lead to convergence results for certain 
cases. 

Example 2.11 The alternating harmonic series is 

. 1 − 1

2
+ 1

3
− 1

4
+ . . . .

By pairing the terms and noting that
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. 
1

k
− 1

k + 1
≤ 0,

we can deduce that 

. 

∣∣∣∣
1

n
− 1

n + 1
+ · · · ± 1

m

∣∣∣∣ ≤ 1

n
,

where the .± depends on whether .m − n is odd or even. This shows that the alternating 
harmonic series satisfies the Cauchy criterion and is therefore convergent. ♦ 

The argument from in Exercise 2.11 can be applied to more general alternating series, 
but this is still a rather special case. Conditional convergence is quite difficult to analyze in 
general. 

One of the key features that makes absolute convergence much more straightforward than 
conditional is the ability to reorder the terms without changing the limit. A rearrangement 
of a series .

∑
zk is a new series given by .

∑
zσk , where  . σ is a bijection .N → N written 

as .k 	→ σk . Rearrangement alters the sequence of partial sums, and so it may affect the 
convergence properties in general. However, for an absolutely convergent series this is not 
an issue. 

Theorem 2.12 For an absolutely convergent series, all rearrangements converge to the 
same value. 

Proof Suppose.
∑

zk is absolutely convergent, with partial sums. sn . For the rearrangement 
defined by .σ : N → N, we have the new partial sums 

. s′
n := zσ1 + · · · + zσn .

Given .ε > 0, we will show that there exists an integer .M so that 

.|s′
n − sn| ≤ ε (2.3) 

for all .n ≥ M . Since. ε is arbitrary, this implies that .(s′
n) converges to the same limit as.(sn). 

To establish (2.3), first choose .m such that 

.

∞∑
k=m

|zk | ≤ ε, (2.4) 

which is possible by absolute convergence. Then set 

. N := max(k : σk ≤ m),

which is finite because . σ is invertible. This ensures that 

.{1, . . . ,m} ⊂ {σ1, . . . , σN }.
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Hence, for .n ≥ N , the difference .s′
n − sn consists of a finite sum of terms .ak with .k > m. 

By (2.4), this implies that .|s′
n − sn| ≤ ε for all .n ≥ N . �

Rearrangements of conditionally convergence series can change the limit. Indeed, a clas-
sic theorem of Riemann says that a real series that is conditionally convergent can be rear-
ranged to converge to any real number, or to diverge to either .±∞. 

Exercise 2.13 Consider two absolutely convergent series, 

. 

∞∑
k=0

ak = A,

∞∑
k=0

bk = B.

Prove that the series .
∑

cn , where  

. cn :=
n∑

k=0

akbn−k,

converges absolutely with 

. 

∞∑
n=0

cn = AB.

2.3.1 Convergence Tests 

The standard method for establishing absolute convergence is through comparison to known 
series, using the following result: 

Exercise 2.14 For some integer .N suppose that .|zk | ≤ bk for all .k ≥ N . Prove that if 
.
∑

bk < ∞, then .
∑

zk converges absolutely. 

Example 2.15 The exponential function is defined by the series 

. exp(z) :=
∞∑
k=0

zk

k! . (2.5) 

To check convergence using Exercise 2.14, a crude lower bound on the factorial will suffice. 
For .k ≥ N , 

. 

1

k! = 1

k(k − 1) · · · (N + 1)N !
≤ 1

Nk−N N ! .
Hence
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.
|z|k
k! ≤ CN

∣∣∣ z
N

∣∣∣
k
. (2.6) 

Comparison to the geometric series then implies that the exponential series (2.5) is absolutely 
convergent for .|z| < N . Since .N was arbitrary, this demonstrates absolute convergence for 
all .z ∈ C. ♦ 

The geometric series can be used more generally as a basis for comparison. For example, 
relating the terms .zk to a power .rk leads to the following: 

Theorem 2.16 (root test) For .zk ∈ C define the quantity 

.q := lim sup
k→∞

|zk |1/k . (2.7) 

The series .
∑

zk converges absolutely if .q < 1 and diverges if .q > 1. 

Proof Suppose.q < 1 and choose. r so that.q < r < 1. By the characterization of the limsup 
in Exercise 1.16, there exists .N so that 

. |zk |1/k < r

for all .k ≥ N . Since this means .|zk | ≤ rk and .r < 1, Exercise  2.14 implies that .
∑

zk con-
verges absolutely. 

Now assume that .q > 1. Then by Exercise 1.16 there are infinitely many . k such that 
.|zk | ≥ 1. This guarantees divergence by Exercise 2.4. �

The root test is inconclusive if .q = 1. It also has the limitation that the formula (2.7) 
may be difficult to evaluate, because of the root. Another way to handle the comparison to 
geometric series is through the ratios of successive elements. 

Exercise 2.17 (ratio test) Prove that the series .
∑

zk is absolutely convergent if 

. lim sup
k→∞

∣∣∣∣
zk+1

zk

∣∣∣∣ < 1.

For example, the ratio test for the exponential series reduces to the calculation 

. lim sup
n→∞

|z|
n + 1

= 0,

which confirms the absolute convergence for all .z ∈ C.
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2.4 Power Series 

A complex power series is a function of .z ∈ C given by 

. f (z) =
∞∑
k=0

ck(z − z0)
k, (2.8) 

with.z0 and.cn in. C. We will frequently set the center point.z0 = 0 for convenience, because 
this constant does not affect convergence. We have already seen in Example 2.6 the geometric 
power series, 

. 
1

1 − z
=

∞∑
k=0

zk, for |z| < 1.

And the exponential power series was introduced in Example 2.15, 

. exp(z) :=
∞∑
k=0

zn

n! , for all z ∈ C.

For a general power series of the form (2.8), the root test gives a straightforward conver-
gence result. In this case, the quantity. q in the root test formula (2.7) reduces to.|z − z0|/R, 
where . R is defined as the radius of convergence of the series, 

.R := 1

lim sup |ck |1/k , (2.9) 

with the interpretation that .R = ∞ if the denominator is . 0 and.R = 0 if the denominator is 
infinite. From Theorem 2.16 we have the following: 

Theorem 2.18 The power series (2.8) converges absolutely for .|z − z0| < R and diverges 
for .|z − z0| > R. 

We have already seen examples of .R = 1 for the geometric series and .R = ∞ for the 
exponential series. If.R = 0 then the series is effectively meaningless, so we always assume 
that .R > 0 for a general power series. 

A natural question to ask at this point is why powers of. z are not included in the definition 
of complex power series. The answer has to do with existence of the complex derivative 
with respect to . z, which fails if any . z terms are included. This issue falls within the realm 
of complex analysis, which we will not go further into here. 

The constant.e := exp(1) is known as Euler’s number. For real variables it is possible to 
define the power .ex independently, by first considering rational powers, and then to prove 
that.ex = exp(x). For complex numbers, we simply take the exponential series as a definition 
of the power, 

.ez := exp(z) (2.10)
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for .z ∈ C. The following addition formula shows that this is consistent with definitions in 
the real or rational cases. 

Lemma 2.19 For .z, w ∈ C, 

. exp(z + w) = exp(z) exp(w). (2.11) 

Proof By the product formula from Exercise 2.13, 

. exp(z) exp(w) =
∞∑
n=0

n∑
k=0

zk

k!
wn−k

(n − k)! .

The sum over . k can be evaluated using the binomial formula, 

. 

n∑
k=0

zk

k!
wn−k

(n − k)! = (z + w)n

n! ,

which yields the result. �

Trigonometric functions can also be defined for complex arguments via power series. For 
example, 

. cos(z) := 1 − z2

2! + z4

4! − . . . ,

and 

. sin(z) := z − z3

3! + z5

5! − . . . ,

both with radius.R = ∞. By comparing these to the exponential series, we can immediately 
see that 

. cos(z) = eiz + e−i z

2
, sin(z) = eiz − e−i z

2i
. (2.12) 

For .θ ∈ R, solving for the exponential in (2.12) yields Euler’s formula : 

. eiθ = cos θ + i sin θ.

By the addition formula (2.11), 

. |eiθ |2 = eiθ · eiθ = eiθe−iθ = 1,

which implies the trigonometric identity 

. cos2 θ + sin2 θ = 1.
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This shows that .(cos θ, sin θ) parametrizes the unit circle, and it is then relatively easy to 
show that the restrictions of the complex functions .sin and .cos to . R agree with the original 
definitions in terms of the geometry of right triangles. 

Euler’s formula yields a very useful geometric interpretation of complex numbers. If 
.(r , θ) is the polar coordinate representation of the Cartesian point .(x, y), then  . z = x + iy
can be written as 

. z = reiθ .

In terms of the geometry of the plane, multiplication by . z corresponds to dilation by . r
coupled with rotation by angle . θ .



3Metric Topology 

To define limits for real or complex sequences we used the absolute value to measure the 
distance between points. The same limit definitions can be applied to any set that is equipped 
with a suitable distance function. From the notion of distance we can derive a collection of 
interrelated concepts that includes limits, continuity, compactness, etc. These are the basic 
notions of topology, and the term metric topology refers to the case where all of these 
concepts are derived from a distance function. 

3.1 Metric Spaces 

On a set . X , a  distance function (also called a metric ) is a map 

. d(·, ·) : X × X → [0, ∞)

satisfying the following properties for all points of . X : 

(i) symmetry: .d(x, y) = d(y, x); 
(ii) definiteness: .d(x, y) = 0 if and only if .x = y; 
(iii) triangle inequality: .d(x, y) ≤ d(x, z) + d(z, y). 

The combination .(X , d) is called a metric space. We have already seen . R and . C as foun-
dational examples, with 

. d(z, w) := |z − w|
in both cases. 
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Example 3.1 The space.Rn is the set of vectors.v = (v1, . . . , vn)with components.v j ∈ R. 
The standard metric on this space is derived from the Euclidean norm , 

.‖v‖ := √
v · v =

√
v21 + · · · + v2n . (3.1) 

The associated distance function is 

.d(v, w) := ‖v − w‖. (3.2) 

The symmetry and positive definiteness of (3.2) are obvious from the definition. The triangle 
inequality in this case follows from the vector identity 

. ‖u + v‖2 = ‖u‖2 + 2‖u‖‖v‖ cos θ + ‖v‖2,

where . θ is the angle between . u and . v. ♦ 

Example 3.2 The extended real number system .R∞ introduced in Sect. 1.2 can be inter-
preted as a metric space using the stereographic projection illustrated in Fig. 3.1. This map 
identifies the angle .θ ∈ (−π

2 , π
2 ) on the half-circle with the point .tan θ ∈ R. We extend this 

to a bijective map .[−π
2 , π

2 ] → R∞ by defining 

. tan(±π
2 ) := ±∞.

The distance on.R∞ can then be measured as the difference in angle on the semicircle. This 
gives a distance function 

. d∞(x, y) := |arctan x − arctan y|.

The triangle inequality for .d∞ follows from the ordinary triangle inequality on . [−π/2,
π/2]. ♦ 

The Euclidean space discussed in Example 3.1 is an example of a very common type 
of metric space, the normed vector space. A  norm .‖·‖ on a vector space .V is a function 
.V → [0, ∞) which satisfies: 

Fig.3.1 The real axis is identified with the semicircle by stereographic projection, with.±∞mapping 
to the endpoints. The metric .d∞ metric corresponds to arclength on the semicircle
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(i) homogeneity: .‖cv‖ = |c|‖v‖ for any scalar . c; 
(ii) definiteness: .‖v‖ = 0 if and only if . 0; 
(iii) triangle inequality: .‖u + v‖ ≤ ‖u‖ + ‖v‖. 

Comparing these properties to the definition of distance makes it clear that a normed vector 
space is a metric space with the default distance function, 

. d(v, w) := ‖v − w‖.

Example 3.3 An alternative to the Euclidean norm (3.1) on.R
n is given by the max norm , 

. ‖v‖max := max
j

|v j |.

for .v = (v1, . . . , vn) ∈ R
n . The two norms are related by inequalities: 

.‖v‖max ≤ ‖v‖ ≤ √
n‖v‖max (3.3) 

for all . v. ♦ 

Example 3.4 For .p ≥ 1 consider the space of .p-summable sequences in . C, which  is  
denoted 

. �p :=
{
α = (α1, α2, . . . ) : ∑∞

j=1|α j |p < ∞
}

,

equipped with the norm 

. ‖α‖p :=
( ∞∑

j=1

|α j |p
)1/p

.

The power of .1/p guarantees that the homogeneity condition is satisfied, and positive def-
initeness is obvious. This leaves the triangle inequality to check. The .�p version of the 
triangle inequality is called the Minkowski inequality: 

.‖α + γ‖p ≤ ‖α‖p + ‖γ‖p. (3.4) 

For.p = 1 the Minkowski inequality is a simple extension of the complex triangle inequality, 
which gives 

. 

n∑
j=1

|α j + β j | ≤
n∑
j=1

|α j | +
n∑
j=1

|β j |

for any finite . n. Since the terms of these sums are positive, Theorem 2.9 allows us to take 
.n → ∞ to conclude that 

. ‖α + β‖1 ≤ ‖α‖1 + ‖β‖1.
This proves the .p = 1 triangle inequality and also confirms that .�1 is a vector space.
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The Minkowski inequality is a bit trickier to prove for.p > 1, but the details involve some 
estimates that are very useful in their own right. The first is Young’s inequality: if.p > 1 and 
.q > 1 satisfy 

. 
1

p
+ 1

q
= 1,

then 

.xy ≤ x p

p
+ yq

q
(3.5) 

for all .x, y > 0. We will defer the proof of Young’s inequality until we have introduced the 
logarithm in Sect. 5.3. 

The next step is Hölder’s inequality for.�p, which says that for.α ∈ �p and.β ∈ �q , with 
.p, q as above, 

.‖αβ‖1 ≤ ‖α‖p‖β‖q , (3.6) 

where .αβ denotes the pointwise product. By the homogeneity of the norms, it suffices to 
prove that 

. ‖αβ‖1 ≤ 1

for.‖α‖p = 1 and.‖β‖q = 1. This follows from Young’s inequality by setting.x = |α j | and 
.y = |β j | in (3.5) and then summing over . j . 

Finally, we note that (3.6) implies that for.α ∈ �p and.β 	= 0 ∈ �q , with. p and. q as above, 

.‖α‖p ≥ ‖αβ‖1
‖β‖q . (3.7) 

Since.(p − 1)q = p, the sequence.|α|p−1 lies in. �q , and setting.β = |α|p−1 yields an equal-
ity in (3.7). Therefore, Hölder’s inequality implies that 

.‖α‖p = sup
‖β‖q=1

‖αβ‖1, (3.8) 

for .p > 1 and .q = p/(p − 1). This is useful because we already checked the triangle 
inequality for the .�1 norm. For .α, β ∈ �p, 

. 

‖α + β‖p = sup
‖γ‖q=1

‖(α + β)γ‖1

≤ sup
‖γ‖q=1

(
‖αγ‖1 + ‖βγ‖1

)

≤ sup
‖γ‖q=1

‖αγ‖1 + sup
‖γ‖q=1

‖βγ‖1

= ‖α‖p + ‖β‖p.

This completes the proof of (3.4). ♦
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Exercise 3.5 The definition given in Example 3.4 can be extended to .p = ∞ by setting 

. �∞ := {
α = (α1, α2, . . . ) : sup |α j | < ∞}

,

with the norm 
. ‖α‖∞ := sup

j
|α j |.

Justify the notation by proving that for .α ∈ �1, 

. ‖α‖∞ = lim
p→∞ ‖α‖p.

3.2 Open and Closed Sets 

The neighborhood of a point .x ∈ X with radius .r > 0 is defined as 

. Nr (x) := {y ∈ X : d(x, y) < r}.

For example, in Euclidean .R
n the neighborhood .Nr (x) is the interior of a spherical ball of 

radius . r centered at . x . For .n = 1 this reduces to an interval centered at . x . 

Example 3.6 The family of .�p norms defined in Example 3.4 and Exercise 3.5 can be 
applied to .Rn as well, by regarding a point .x = (x1, . . . , xn) as a finite sequence. For 
.p ∈ [1, ∞) this gives 

. ‖x‖p :=
(
x p
1 + · · · + x p

n

)1/p
,

while.‖·‖∞ is equal to the max norm (4.11). Of course,.‖·‖2 is the familiar Euclidean norm. 
Some neighborhoods for different values of . p are illustrated in Fig. 3.2. 

The concept of a neighborhood is used to define various classes of points in relation to a 
subset. Given a subset .E ⊂ X : 

Fig. 3.2 Neighborhoods in .R2 with respect to .�p norms
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(i) .x ∈ E is an interior point if .Nε(x) ⊂ E for some.ε > 0. 
(ii) .x ∈ E is an isolated point if .Nε(x) ∩ E = {x} for some.ε > 0. 
(iii) .x ∈ X is a limit point of .E if every neighborhood .Nε(x) contains at least one point 

.y ∈ E with .y 	= x . 
(iv) . x is a boundary point of .E if every neighborhood .Nε(x) intersects both .E and .Ec. 

Note that interior and isolated points are required to be elements of . E , while limit and 
boundary points need not be. Some special notations are used for these classes, 

. 

E◦ := {interior points of E},
E ′ := {limit points of E},

∂E := {boundary points of E}.

Example 3.7 Consider. R as a metric space. For the open interval.I = (a, b) the set of limit 
points is the closed interval .[a, b]. All points of .(a, b) are interior and there are no isolated 
points. The endpoints of the interval are boundary points. 

For the subset of integers, all points of. Z are isolated boundary points. There are no limit 
points or interior points in this case. 

For. Q as a subset of. R, every real number qualifies as a limit point and a boundary point, 
by Theorem 1.3. There are no interior or isolated points. ♦ 

Here are some exercises to reinforce these fundamental definitions: 

Exercise 3.8 Decide whether the statements below are true or false, and either give a proof 
or find a counterexample. All statements refer to a subset .E of a metric space . X . 

(a) Every point in .E set is either interior or isolated. 
(b) Every point in .E is either interior or boundary. 
(c) All points of .X are either interior to . E , interior to .Ec, or boundary points. 
(d) A point of .E that is not isolated is a limit point. 
(e) A limit point of .E is either interior or a boundary point. 

Exercise 3.9 A point .p ∈ X is called an accumulation point of .E ⊂ X if every neighbor-
hood of . p contains infinitely many points of . E . Prove that the definitions of accumulation 
point and limit point are equivalent. 

From the classification of points introduced above, we obtain the fundamental definitions 
of metric topology. For a subset .E ⊂ X , 

(i) .E is open if all its points are interior. 
(ii) .E is closed if it contains all of its limit points.
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This definition is consistent with the terminology of open and closed intervals in . R. A set  
may be neither open nor closed, as the example of a half-open interval .(a, b] demonstrates. 
On the other hand, the empty set is both open and closed, as is . R itself. In any metric space 
. X , both of the sets . ∅ and .X automatically qualify as both open and closed. 

Exercise 3.10 Prove that neighborhoods are open. 

Exercise 3.11 Prove that a set is open if and only if its complement is closed. 

The behavior of open and closed sets under complements and other basic set operations 
is described in the following: 

Exercise 3.12 Prove the following: 

(a) The union of any collection of open sets is open. 
(b) The intersection of a finite collection of open sets is open. 
(c) The intersection of any collection (not necessarily countable) of closed sets is closed. 
(d) The union of a finite collection of closed sets is closed. 

The interior .A◦ of a set .A ∈ X is often described as the largest open set contained in 
. A. This means that if .U ⊂ A is open, then .U ⊂ A◦. This follows immediately from the 
definition of interior point. Since the union of an arbitrary collection of open sets is open by 
Exercise 3.12, we could also characterize .A◦ as the union of all open subsets of . A. 

We can similarly define the closure of . A, denoted by . A, as the smallest closed set 
containing. A, or equivalently as the intersection of all closed sets containing. A. The following 
result gives another characterization of the closure which is often used as the definition. 

Theorem 3.13 For a subset .A ⊂ X, 

. A = A ∪ A′,

where .A′ is the set of limits points of . A. 

Proof Let.B = A ∪ A′. Our first claim is that. B is closed. To prove this we will show that. Bc

is open. If .x /∈ B, then there exists a neighborhood .Nε(x) that contains no point of . A other 
than possibly . x . If  .x /∈ A also, then .Nε(x) ∩ A = ∅. Because .Nε(x) is open, this implies 
that .Nε(x) contains no limit points of . A either. Hence .Nε(x) ∩ B = ∅ and so .Nε(x) ⊂ Bc. 
This proves that .Bc is open, and hence . B is closed. 

Now suppose that .F is closed and .A ⊂ F . A limit point of . A is also a limit point of . F , 
by definition, which means that .A′ ⊂ F also. Thus .B ⊂ F , and therefore .B is the smallest 
closed set containing . A. �



36 3 Metric Topology

Exercise 3.14 Show that 
. A = A ∪ ∂A,

where .∂A is the set of boundary points of . A. 

Exercise 3.15 Determine if these statements are true or false, and give either a proof or 
counterexample: 

(a) . A ∪ B = A ∪ B
(b) . A ∩ B = A ∩ B
(c) . (A ∪ B)◦ = A◦ ∪ B◦
(d) . (A ∩ B)◦ = A◦ ∩ B◦

We say that a subset .E is dense in .X if .E = X . For example, Theorem 1.3 implies that 
.Q is dense in . R. 

Exercise 3.16 Prove that a set .E is dense in .X if and only if .E intersects every non-empty 
open set in . X . 

3.2.1 Subspace Topology 

Given a metric space.(X , d) and a subset.Y ⊂ X , we can use. d to measure distance even when 
our attention is restricted to points of. Y . The restriction.d|Y clearly satisfies the requirements 
for a distance function on . Y , and thus . Y inherits a natural metric structure from the larger 
set. To indicate that the metric was obtained in this way, we call .Y a metric subspace of 
. X . The resulting definitions of interior points, limit points, open and closed sets, etc., are 
collectively referred to as the subspace topology on . Y . 

When using subspace topology, we need to be very careful about the context of topological 
terms, because they can have a different meaning in the two topologies. For example, suppose 
.Y = [0, 1] is defined as a metric subspace of . R. Then a neighborhood of the point . 1 in . Y
has the form.Nε(1) = (1 − ε, 1], which does not qualify as a neighborhood in . R. The set . Y
is open in the subspace topology but not in the topology of . R. 

Given a fixed metric space. X , the default assumption is that all terms refer to the topology 
of .X unless otherwise indicated. The qualification “relative to . Y ” is added to specify the 
use of the subspace topology. 

Theorem 3.17 Let .X be a metric space and .Y ⊂ X. A set  .E ⊂ Y is open relative to . Y if 
and only if there is an open set .G ⊂ X such that 

.E = G ∩ Y .
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Proof Let us use .Nr (x) to denote a neighborhood in . X , and  .Vr (y) for a neighborhood 
relative to . Y . Since the distance function on . Y is defined by restriction, 

.Vr (y) = Nr (y) ∩ Y (3.9) 

for .y ∈ Y . 
If .G ⊂ X is open, then for each .y ∈ G ∩ Y , we can find .ε > 0 such that .Nε(y) ⊂ G. 

By (3.9), the corresponding neighborhood.Vε(y) is contained in.G ∩ Y . Therefore.G ∩ Y is 
open relative to . Y . 

Now assume that .E ⊂ Y is open relative to . Y . For each.y ∈ E , we find.ry > 0 such that 
.Vry (x) ⊂ E . If we then define .G by setting 

. G :=
⋃
y∈E

Nry (y),

then .G is  open by Exercise  3.12, and (3.9) implies that 

.G ∩ Y =
⋃
y∈E

Vry (y) = E .

�

The subspace topology allows us to give a concise formulation of connectedness without 
making any reference to paths between points. A subset .E ⊂ X is defined to be connected 
if the only subsets of .E which are both open and closed relative to .E are . ∅ and . E . 

We can make this definition a bit more intuitive by introducing a complementary notion. 
Two non-empty subsets . A and . B are separated if both .A ∩ B and .A ∩ B are empty. 

Exercise 3.18 Prove that a subset is connected if and only if it cannot be written as the 
union of two non-empty separated sets. 

If .A and .B are disjoint non-empty closed sets, then the requirements for separation are 
automatically satisfied, because.A = A and.B = B. The same conclusion holds for disjoint 
open sets. 

Exercise 3.19 Prove that two non-empty open sets are separated if they are disjoint. 

We defined an interval in Sect. 1.1 as a convex subset of the real numbers. The following 
result shows that connectedness in . R is equivalent to convexity. 

Theorem 3.20 The connected subsets of . R are precisely the intervals.
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Proof To see that an interval .I ⊂ R is connected, suppose that .I = A ∩ B, where. A and. B
are disjoint and not empty. Pick .a ∈ A and .b ∈ B. We can assume that .a < b by switching 
the sets if necessary. Then let 

. x = sup(A ∩ [a, b]).
Since . I is an interval, all points in .(x, b] are contained in . I and must therefore be elements 
of . B. This implies .x ∈ B. We also know that .x ∈ A by Exercise 1.7. Since .x ∈ A ∪ B, this 
shows that . A and . B are not separated. We conclude that . I is connected. 

Now assume.E ⊂ R is connected. To prove that. E is an interval we suppose that. x, y ∈ E
with.x < y. For.x < t < y, let.A = (−∞, t) ∩ E and.B = (t, ∞) ∩ E . These sets are non-
empty and separated, so it follows from Exercise 3.18 that .E 	= A ∪ B. This shows that 
.t ∈ E for all .t ∈ (x, y), which proves that .E is an interval. �

3.3 Convergence and Completeness 

In a metric space .(X , d), a sequence .(xk) converges to . y if 

. lim
k→∞ d(xk, y) = 0.

This clearly generalizes the definition given in Sect. 1.2 for real numbers, and we use the 
same abbreviated notations when the index is clear: .lim xk = y or .xk → y. 

Exercise 3.21 Prove that.x0 is a limit point of.E ⊂ X if and only if there is a sequence. (xn)
in .E \ {x0} such that .xn → x0. 

Exercise 3.22 For .xn ∈ R and .α ∈ R∞, prove that .xn → α in the metric space . (R∞, d∞)

defined in Example 3.2 if and only if .xn → α in the extended sense defined in Sect. 1.2. 

A sequence .(xn) is Cauchy if for every .ε > 0, there exists .N such that 

.d(xm, xn) < ε for all m, n ≥ N . (3.10) 

Convergent sequences are Cauchy by the triangle inequality, as we observed in Lemma 1.22. 
The converse is not necessarily true, however. For example, consider .X = (0, 1) as a sub-
space of . R. A sequence in .(0, 1) that converges to . 0 in .R is Cauchy but not convergent in 
. X . 

A Cauchy sequence .(xn) is necessarily bounded, which means there exists .R > 0 such 
that 

.d(xn, xm) ≤ R
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for all .n,m. This is clear because all but finitely many points lie within a neighborhood of 
finite radius. Another useful property of Cauchy sequences is the following result, which is 
the generalization of the argument used in Exercise 1.26. 

Exercise 3.23 Suppose .(xn) is a Cauchy sequence. Prove that if there is a subsequence 
.(xnk ) such that 

. lim
k→∞ xnk = x,

then the full sequence converges to . x . 

A metric space is complete if every Cauchy sequence converges. This proves to be a 
crucial property for most applications of metric spaces. Indeed, we do not normally consider 
a metric space to be properly defined unless it is complete. This is because we often need to 
establish the convergence of a sequence whose limit is unknown, and without the Cauchy 
criterion this may not be possible. 

For metric spaces defined using a subspace topology, as described in Sect. 3.2.1, the issue 
of completeness is easily resolved if the ambient space is already known to be complete. 

Exercise 3.24 Suppose .X is a complete metric space. For a subset .Y ⊂ X , prove  that . Y is 
complete as a metric subspace if and only if . Y is closed. 

We have already seen that. R is metrically complete in Theorem 1.23, and. C in Exercise 2.3. 
These results are easily extended to Euclidean vector spaces of higher dimension. 

Theorem 3.25 The Euclidean vector spaces .Rn and .C
n are complete. 

Proof It suffices to prove the real case, since .Cn is equivalent to .R2n under the Euclidean 
norm. We have already shown that . R is metrically complete in Theorem 1.23. 

Let.(vk) be a bounded sequence in.R
n , with.vk written in coordinates as.(vk,1, . . . , vk,n). 

Since 
. ‖vk − vm‖ ≥ |vk, j − vm, j |

for each . j , each sequence of coordinates .(vk, j )k∈N is Cauchy in . R. By Theorem  1.23 the 
limits 

. w j := lim
k→∞ vk, j

exist for each . j . This defines a vector .w ∈ R
n . We have .vk → w because 

. ‖vk − w‖2 =
n∑
j=1

|vk, j − w j |2,

and the terms in the sum all approach . 0 as .k → ∞. �
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Although Theorem 3.25 refers specifically to the Euclidean metric, it turns out that all 
finite-dimensional normed vector spaces are complete, for any choice of norm. To establish 
this fact, we will show that all finite-dimensional norms generate the same topology. For this 
purpose, it will be helpful to first extend the Bolzano-Weierstrass property (Theorem 1.25) 
to higher dimension. 

Theorem 3.26 (Bolzano-Weierstrass) A bounded sequence in.R
n or.Cn has a convergent 

subsequence. 

Proof As above, it suffices to consider the real case. Let.(vk) be a bounded sequence in.R
n , 

written in coordinates as .(vk,1, . . . , vk,n). Since each sequence .(vk,1)∞k=1 is bounded in . R, 
Theorem 1.25 implies that by passing to a subsequence we can assume that.vk,1 → w1 ∈ R. 
We can then passing to a further subsequence to obtain .vk,2 → w2 ∈ R, and so on. After . n
steps, we will have reduced the original sequence to a subsequence such that converges to 
.w in .R

n . �

Cauchy sequences are bounded, as noted above. Thus, a metric space that has the Bolzano-
Weierstrass property is complete by Exercise 3.23. Not all complete metric spaces have the 
Bolzano-Weierstrass property, however, as we will see below. 

On a vector space . V , the norms .‖·‖1 and .‖·‖2 are considered equivalent if there exists 
constants .c,C > 0 such that 

.c‖v‖2 ≤ ‖v‖1 ≤ C‖v‖2 (3.11) 

for all .v ∈ V . For equivalent norms, (3.11) implies that any neighborhood defined with 
respect to one of the norms contains a neighborhood defined with respect to the other. This 
means that the definitions of all open and closed sets and all other topological notions from 
Sect. 3.2 will be identical for the two norms. In other words, equivalent norms generate the 
same topology. In particular, they yield the same definitions of convergence and of Cauchy 
sequences. 

We will demonstrate the equivalence of any two norms on a finite-dimensional vector 
space as an application of the Bolzano-Weierstrass theorem. 

Theorem 3.27 On a finite-dimensional real or complex vector space, all norms are equiv-
alent. 

Proof It suffices to prove this for .Rn or .Cn , and since the real and complex cases have 
essentially the same argument, we consider only the real case. 

Let .‖·‖ be the Euclidean norm on .Rn , and let .‖·‖∗ denote some other norm. Writing 
.x = (x1, . . . , xn) ∈ R

n as .
∑n

j=1 x j e j with respect to the standard basis .{e j } and applying 
the triangle inequality for .‖·‖∗ gives
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. ‖x‖∗ ≤
n∑
j=1

|x j |‖e j‖∗

≤ nmax
j

(|x j |)max
j

(‖e j‖∗).

Since .|x j | ≤ ‖x‖ for each . j , this yields 

.‖x‖∗ ≤ c1‖x‖, (3.12) 

with .c1 > 0. 
To prove the reverse inequality, suppose for the sake of contradiction that there is no 

constant. C such that.‖v‖ ≤ C‖v‖∗ for all.v ∈ R
n . Then for each.k ∈ Nwe can find a vector 

.vk ∈ R
n such that .‖vk‖ = 1 and 

.‖vk‖∗ <
1

k
. (3.13) 

Since the .vk are Euclidean unit vectors, Theorem 3.26 implies that a subsequence . (vkn )
converges to some.w ∈ R

n in the Euclidean sense, 

.‖vkn − w‖ → 0. (3.14) 

Clearly .w 	= 0, since  .‖vkn‖ = 1. On the other hand, (3.12) and  (3.14) imply that . ‖vk −
w‖∗ → 0 also. This gives .w = 0 by (3.13), a contradiction. This proves that there exists a 
constant .c2 > 0 such that 

.‖x‖ ≤ c2‖x‖∗ (3.15) 

for all .x ∈ R
n . 

The inequalities (3.12) and (3.15) demonstrate that .‖·‖∗ is equivalent to the Euclidean 
norm. Hence any two norms on .R

n are equivalent to each other. �

Theorems 3.26 and 3.27 yield the following: 

Corollary 3.28 Every finite-dimensional normed vector space is complete and has the 
Bolzano-Weierstrass property. 

The story is quite different for infinite-dimensional normed vector spaces, where com-
pleteness is not guaranteed and the Bolzano-Weierstrass property may fail even when spaces 
are complete. 

Example 3.29 We will show that .�p is complete for .1 ≤ p < ∞ but does not satisfy 
Bolzano-Weierstrass. Suppose that.(αk) is a Cauchy sequence in.�p. For convenience let us 
notate each sequence as a map 

.αk : N → C.
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The fact that.(αk) is Cauchy implies that the sequences.(αk( j))∞k=1 are Cauchy in. C for each 
. j . Hence, by Theorem 3.26 we can define .β : N → C by taking the limits 

. β( j) := lim
k→∞ αk( j).

Our goal is to show that .β ∈ �p and that .αk → β with respect to the .p-norm. 
Since Cauchy sequences are bounded, there exists .M > 0 so that .‖αk‖p ≤ M for all . k. 

For .n ∈ N, the Minkowski inequality (3.4) implies that 

. 

( n∑
j=1

|β( j)|p
)1/p

≤
( n∑

j=1

|αk( j) − β( j)|p
)1/p

+
( n∑

j=1

|αk( j)|p
)1/p

≤
( n∑

j=1

|αk( j) − β( j)|p
)1/p

+ M .

Taking .k → ∞, with . n fixed, yields 

. 

( n∑
j=1

|β( j)|p
)1/p

≤ M .

We can then let .n → ∞ to prove that .‖β‖p ≤ M . 
To show that .αk → β, let .ε > 0. By the Cauchy condition, there exists .N so that . ‖αk −

αm‖p ≤ ε for .k,m ≥ N . For any .n ∈ N this implies in particular that 

. 

( n∑
j=1

|αk( j) − αm( j)|p
)1/p

≤ ε.

Taking .m → ∞ in this inequality gives 

. 

( n∑
j=1

|αk( j) − β( j)|p
)1/p

≤ ε.

Since . n was independent of . ε, we can then let .n → ∞ to see that 

. ‖αk − β‖p ≤ ε

for .k ≥ N . 
To see that the Bolzano-Weierstrass property does not hold, consider the sequence 

. αk( j) =
{
1, j = k,

0, otherwise.

This sequence is bounded since .‖αk‖p = 1 for all . k. But
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. ‖αk − αm‖p = 21/p

for all .k 	= m, so a convergent subsequence is not possible. ♦ 

Exercise 3.30 Prove that the space .�∞ introduced in Exercise 3.5 is complete. 

In Sect. 2.3 we remarked that the absolute convergence property for series could be 
interpreted as a completeness axiom. This turns out to be true for a general normed vector 
space . V . A series .

∑
uk in .V converges to an element .w ∈ V if 

. lim
n→∞

n∑
k=1

uk = w. (3.16) 

The limit of partial sums is defined in the topology of . V , so (3.16) means that 

. lim
n→∞

∥∥∥∥
n∑

k=1

uk − w

∥∥∥∥ = 0. (3.17) 

The series is said to converge absolutely if .
∑‖uk‖ < ∞. 

Theorem 3.31 A normed vector space is complete if and only if every absolutely convergent 
series is convergent. 

Proof Suppose .(V , ‖·‖) is a complete and let .
∑

uk be an absolutely convergent series. 
Define the partial sums 

. sn :=
n∑

k=1

uk .

By the triangle inequalty, 

. |sn − sm | ≤
m∑

k=n+1

‖uk‖

for .n < m. Since this is bounded by .
∑∞

k=n+1‖uk‖, absolute convergence implies that the 
sequence .(sn) is Cauchy. Therefore .(sn) converges by completeness. 

Now suppose that .V has the absolute convergence property, and let .(vk) be a Cauchy 
sequence. For each .n ∈ N, choose .kn so that 

. ‖vi − v j‖ ≤ 2−n

for .i, j ≥ kn . This implies in particular that 

.

∑
‖vk j+1 − vk j ‖ < ∞.
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By assumption the series.
∑

(vk j+1 − vk j ) is convergent. Since the partial sums are given by 

. 

n∑
j=1

(vk j+1 − vk j ) = vn+1 − v1,

we conclude that the subsequence .(vkn ) is convergent. Hence the full sequence converges 
by Exercise 3.23. �

3.3.1 Metric Completion 

Given a metric space which is not complete, we can define a completion by the same strategy 
that Cantor used to construct the real numbers. This means that points in the completion are 
represented by equivalence classes of Cauchy sequences. 

For sequences in .(X , d) the equivalence relation is defined by 

. (xk) ∼ (yk) if lim
k→∞ d(xk, yk) = 0.

This relation is clearly reflexive and symmetric, and transitivity follows from the triangle 
inequality. Let 

. X∗ := {equivalence classes of Cauchy sequences in X}.

We will use the notation .[(xk)] to indicate the class of the sequence .(xk). Note that there is 
a natural inclusion .X → X∗ given by 

.x �→ [(x)], (3.18) 

where .(x) denotes the constant sequence. 

Exercise 3.32 For any two Cauchy sequences .(xk) and .(yk) in . X , prove that . limk→∞
d(xk, yk) exists in . R. Furthermore, show that this limit depends only on the equivalence 
classes of .(xk) and .(yk). 

Exercise 3.32 allows us to make the following definition for the distance function on.X∗, 

. d∗([(xk)], [(yk)]
) := lim

k→∞ d(xk, yk).

Theorem 3.33 The metric space .(X∗, d∗) is complete. 

Proof Let .(αn) be a Cauchy sequence in .X∗. For each .αn , choose a representative Cauchy 
sequence.(xnk )∞k=1 in. X . The fact that.(αn) is Cauchy with respect to.d∗ means that for. ε > 0
there exists .N so that
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.m, n ≥ N =⇒ lim
k→∞ d(xnk , xmk ) ≤ ε. (3.19) 

For each . n, we can use the fact that .(xnk ) is Cauchy to choose .Nn so that 

. i, j ≥ Nn =⇒ d(xni , xnj ) ≤ 1

n
.

Now consider the sequence .yk with elements 

. ym : =xmNm
.

To see that this sequence is Cauchy, let .ε > 0 and choose .N so that (3.19) holds. We can 
estimate, for .k ≥ max(Nn, Nm), 

. 

d(ym, yn) ≤ d(ym, xmk ) + d(xnk , xmk ) + d(xmk , ym)

≤ 1

m
+ d(xnk , xmk ) + 1

n
.

Taking .k → ∞ by (3.19) yields 

.d(ym, yn) ≤ 1

m
+ 1

n
+ d∗(αm, αn). (3.20) 

This implies that .(ym) is Cauchy in . X , since .(αn) is Cauchy in .X∗. 
We claim that .αn → β in .X∗, where .β = [(ym)]. To see this, we need to estimate 

. d∗(αn, β) = lim
m→∞ d(xnm, ym).

Observe that 

. 

d(xnm, ym) ≤ d(xnm, yn) + d(yn, ym)

≤ d(xnm, yn) + 1

m
+ 1

n
+ d∗(αm, αn),

by (3.20). For .m sufficiently large, .d(xnm, yn) ≤ 1/n, so taking .m → ∞ gives 

. d∗(αn, β) ≤ 2

n
+ lim sup

m→∞
d∗(αm, αn).

The fact that the .(αn) is Cauchy implies that the right-hand side approaches .0 as 
.n → ∞. �

Exercise 3.34 Show that the inclusion of .X in .X∗ gives a dense subset.
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3.4 Compact Sets 

Compactness is a topological concept that plays a fundamental role in many applications of 
metric spaces. We first discuss the standard topological definition, and later in the section 
we will give an alternative formulation in terms of sequential convergence. 

A set  .K ⊂ X is compact if every open cover of .K has a finite subcover, where open 
cover means a collection of open sets .{Uα}α∈J , such that 

. K ⊂
⋃
α∈J

Uα.

The index set .J is arbitrary here in particular need not be countable. To say that a given 
open cover .{Uα} has a finite subcover means that we can choose finitely many of the sets, 
say .U1, . . . ,Um , such that 

. K ⊂
m⋃
j=1

Uj .

The empty set is compact by default, since no sets are needed to cover. A finite set is also 
clearly compact, because any cover can be reduced to a subcover by taking at most one set per 
point. To prove that a set is not compact is in some sense easier than proving compactness, 
because we need only give one example of a cover that admits no finite subcover. 

Example 3.35 The Euclidean space.Rn is not compact. To show this, consider a cover con-
sisting of neighborhoods.{Nr (0)}r>0. Since these sets are nested, for any finite subcollection 
with radii .r1 < · · · < rm we obtain 

. 

m⋃
j=1

Nr j (0) = Nrm (0).

Hence no finite subcover could contain . R. 
Similarly, a neighborhood.Na(x0) ⊂ R

n is not compact because the cover. {Nr (x0)}0<r<a

admits no finite subcover. ♦ 

Example 3.36 Suppose .E ⊂ X is an infinite set with no limit points, so that .E is closed 
but its points are isolated. Each.x ∈ E has a neighborhood which contains no other point of 
. E . The collection of these neighborhoods yields an open cover with no finite subcover, so 
.E is not compact. ♦ 

A subset .E of a metric space is said to be bounded if its diameter is finite, meaning that 

. sup{d(x, y) : x, y ∈ E} < 0.
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By the triangle inequality,. E is bounded if and only if there exists a point.x0 ∈ X and a finite 
radius . R such that .E ⊂ NR(x0). 

Theorem 3.37 Compact sets are closed and bounded. 

Proof Suppose that .K ⊂ X is compact. For .x0 ∈ X we can write 

. X =
⋃
r>0

Nr (x0).

Thus .{Nr (x0)}r>0 covers .K in particular. The existence of a finite subcover implies that 

. K ⊂ NR(x0)

for some finite value of . R. Hence .K is bounded. 
To show that .K is closed, suppose .y ∈ Kc. Since  

. 

⋃
r>0

{x ∈ X : d(x, y) > r} = X \ {y},

the left-hand side yields an open cover for . K . These sets are nested, so the existence of a 
finite subcover implies that 

. K ⊂ {x ∈ X : d(x, y) > δ},

for some.δ > 0. In particular,.Nδ(y) ⊂ Kc. Since. y was arbitrary this proves that.Kc is open 
and hence .K is closed. �

The converse of Theorem 3.37 is false in general. For example, let.X = (−1, 1) as a metric 
subspace of. R. Then.X is closed in the subspace topology and has diameter. 2. However, the  
argument from Example 3.35 shows that .X is not compact. 

This example highlights a major difference between compactness and the other topo-
logical properties introduced in Sect. 3.2. The definitions of open and closed change their 
meanings in a subspace topology. In particular, every subset of a metric space is both open 
and closed relative to its own topology. The following result shows that compactness is an 
intrinsic property. 

Exercise 3.38 Let .X be a metric space with subspace .Y ⊂ X . Prove that a subset . K ⊂ Y
is compact relative to . Y if and only if .K is compact relative to . X . 

Establishing the compactness of a given set directly from the definition can be challenging. 
We need to start with an arbitrary open cover and give some procedure by which it can be 
reduced to a finite collection. However, if the full metric space .X is compact, then the 
condition is easy to verify for subsets.
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Lemma 3.39 If .X is a compact metric space and .F ⊂ X is closed, then .F is compact. 

Proof Suppose.X is compact and.F ⊂ X is closed. If .{Uα} is an open cover for. F , then we 
can form an open cover of .X by taking.{Uα} ∪ Fc. Since.X is compact, there exists a finite 
subcover of the form 

. X ⊂ Fc ∪U1 ∪ · · · ∪Um .

This implies in particular that 
. F ⊂ U1 ∪ · · · ∪Um,

proving that .{Uα} admits a finite subcover for . F . �

Although we have observed that the converse of Theorem 3.37 is not true in general, 
there is one important category of spaces for which it does hold. 

Theorem 3.40 (Heine-Borel) A subset of a finite-dimensional normed vector space is 
compact if and only if it is closed and bounded. 

Proof In Theorem 3.27 we proved that all norms on finite-dimensional vector spaces are 
topologically equivalent. Hence it suffices to prove the result for Euclidean.R

n . The fact that 
a compact set is closed and bounded was already established in Theorem 3.37. 

Let .E ⊂ R
n be closed and bounded. For convenience, we can place .E inside a closed 

cube .Q ⊂ R
n of side length . l for . l sufficiently large. It suffices to show that .Q is compact, 

since the compactness of .E will then follow from Lemma 3.39. 
Assume that .Q is not compact, which means there is an open cover .{Uα} which admits 

no finite subcover. Consider a subdivision of .Q into a union of .2n closed cubes of side .l/2. 
If each of these smaller cubes had a finite subcover, then .Q would have a finite subcover 
also. Hence, at least one of least one of these inner cubes, call it .Q1, does not admit a finite 
subcover. 

We can then subdivide.Q1 in the same way, and choose a cube.Q2 of side .l/4 inside. Q1

with no finite subcover. Continuing this process produces a sequence of nested cubes 

. Q1 ⊃ Q2 ⊃ . . .

where each .Q j has side width .l/2 j and no cube in the sequence admits a finite subcover 
drawn from.{Uα}. 

Now form a sequence by choosing a point .x j ∈ Q j for each . j . For .i, j ≥ N we have 

. |xi − x j | ≤ 2−Nl.

Thus.(x j ) is a Cauchy sequence. By completeness (Theorem 3.25), the sequence converges 
and we can set .x = lim x j . Since the cubes are closed, .x ∈ Q j for all . j .
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Choose one of the covering sets .Uα so that .x ∈ Uα. Since  .Uα is open, the fact that the 
diameter of.Q j tends to zero implies that.Q j ⊂ Uα for. j sufficiently large. This contradicts 
the fact that .Q j does not admit a finite subcover. From this contradiction we conclude that 
every open cover of .Q admits a finite subcover, and hence .Q is compact. �

The Heine-Borel theorem does not apply to infinite-dimensional normed vector spaces, 
as illustrated by the following: 

Example 3.41 Consider the space .�p introduced in Example 3.4. Let . B be the closed unit 
ball, 

. B = {α ∈ �p : ‖α‖p ≤ 1}.
For .0 < ε < 1 and .n ∈ N, define the open sets 

. Un : ={α ∈ �p : |αk | < ε for all k ≥ n}.

Then .∪∞
n=1Un = �p, so  .{Un} forms an open cover of .B in particular. Because the sets are 

nested, the union over any finite subcover is equal to.UN for some integer. N . Since.UN does 
not contain . B for any . N , . B is not compact. ♦ 

The proof of Theorem 3.40 features a nesting argument which often turns out to be useful 
for arguments involving compactness. Note that the hypotheses are somewhat different in 
the following statement. We do not assume that .X is complete, or that the diameters of the 
sets go to zero. 

Exercise 3.42 (nested compact set property) Let .{K j } be a sequence of compact sets 
which are nested, 

. K1 ⊃ K2 ⊃ . . . ,

and not empty. Prove that the intersection .∩∞
j=1K j contains at least one point. 

3.4.1 Sequential Compactness 

A set .K is sequentially compact if every sequence in .K has subsequence that converges in 
. K . We have already seen an example of this property in the context of Euclidean spaces. 
A sequence in a compact set .K ⊂ R

n has a subsequence converging in .K by Bolzano-
Weierstrass (Theorem 3.26). Therefore, compact subsets of .Rn are sequentially compact. 

In metric spaces sequential compactness turns out to be equivalent to compactness defined 
in terms of open covers. Before proving this, it is helpful to introduce yet another alternate 
definition. A set .K is called limit-point compact if every infinite subset of .K has a limit 
point inside the set.
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Lemma 3.43 For metric spaces, sequential compactness is equivalent to limit-point com-
pactness. 

Proof Suppose.K is sequentially compact and let.A ⊂ K be an infinite set. Then. A contains 
a sequence.(xk) made up of distinct points. Sequential compactness means that there exists 
a subsequence converging to some.y ∈ K . Hence . y is a limit point of . A. 

Now assume that .K is limit point compact and let .(xk) be a sequence in . K . If some  
element of the sequence is repeated infinitely many times, the sequence admits a constant 
subsequence, which obviously converges. Thus it suffices to consider the case where each. xk
is repeated at most finitely many times. This implies that.{xk} is an infinite set and therefore 
has a limit point .y ∈ K by assumption. To form a convergent subsequence, choose .xkn for 
each . n so that .d(xkn , y) < 1/n. �

We start by proving that compactness implies sequential compactness. This actually 
remains true in a general (non-metric) topology. However, we will restrict our attention to 
the metric case to simplify the proof. 

Theorem 3.44 A compact set in a metric space is sequentially compact. 

Proof Suppose.K is a compact subset of a metric space. By Lemma 3.43 it suffices to show 
that .K is limit point compact. 

Let .A ⊂ K be an infinite set and, for the sake of contradiction, assume that .A has no 
limit point in . K . This implies that . A is closed in particular, and therefore . A is compact by 
Lemma 3.39. Since  .A contains only isolated points, for each .x ∈ A there exists .εx > 0 so 
that.Nεx (x) ∩ K = {x}. The collection.{Nεx }x∈A is an open cover of. A which clearly admits 
no finite subcover, since .A is infinite and each neighborhood contains a single point. This 
contradicts the compactness of . A. Therefore . A has a limit point in . K . �

To prove the converse of Theorem 3.44, we need a preliminary result that gives some 
uniform control over the size of neighborhoods that fit within a particular covering. 

Lemma 3.45 (Lebesgue covering lemma) Suppose that.K is a sequentially compact subset 
of a metric space . X. Given an open cover .{Uα}α∈J , there exists a radius .r > 0 such that 
for each .x ⊂ K, .Nr (x) is contatined in .Uα for some .α ∈ J . 

Proof Assume, for the sake of contradiction, that no such . r exists. Then for each . k ∈ N

we can find a point .xk ∈ K for which .N1/k(xk) is not contained in any .Uα. Since  .K is 
sequentially compact, there exists a subsequence .(xkn ) converging to some .y ∈ K . Choose 
.α0 ∈ J so that .y ∈ Uα0 . Since  .Uα0 is open, there exists .δ > 0 so that .Nδ(y) ⊂ Uα0 . For  
.kn > 2/δ we then have
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. N1/kn (xkn ) ⊂ Nδ(y) ⊂ Uα0

by the triangle identity. This contradicts the choice of .xkn . �

Theorem 3.46 In a metric space, sequential compactness implies compactness. 

Proof Assume that .K ⊂ X is sequentially compact, and let .{Uα} be an open cover for . K . 
Choose .r > 0 according to Lemma 3.45, so that for each .x ∈ K , .Nr (x) ⊂ Uα for some. α. 

Fix some.x1 ∈ K , and then choose.x2 /∈ Nr (x1), if possible. We then continue this process 
as long as possible, choosing, if we can, .xk so that 

. xk /∈ Nr (x1) ∪ · · · ∪ Nr (xk−1).

If this process were continued indefinitely, then the result would be an infinite sequence 
with points separated by distance at least . r from each other. Such a sequence cannot have a 
convergent subsequence, and is thus ruled out by the sequential compactness of . K . 

Therefore, the process terminates at some finite value of . n, for which 

. K ⊂ Nr (x1) ∪ · · · ∪ Nr (xn).

Since each neighborhood .Nr (x j ) lies in some set .Uj taken from the cover, we have con-
structed a finite subcover, 

.K ⊂ U1 ∪ · · · ∪Un .

�

The equivalence of these different definitions of compactness means that in metric topol-
ogy we can choose the formulation that seems best suited to the proof or application at hand. 
For example, the result of Exercise 3.38 is very easy to prove using sequential compactness, 
because use of the subspace topology does not affect the convergence of a sequence. 

Exercise 3.47 Prove directly that sequentially compact sets are closed and bounded, i.e., 
give a sequential proof of Theorem 3.37. 

Exercise 3.48 Prove directly that closed and bounded subsets of .Rn are sequentially com-
pact, i.e., give a sequential proof of Theorem 3.40. 

Exercise 3.49 In a metric space. X , suppose that.K and. F are disjoint sets with.K compact 
and .F closed. Prove that the distance 

. d(K , F): = inf{d(p, q) : p ∈ K , q ∈ F}

is strictly positive.
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3.5 Baire Category Theorem 

The proof that .R is uncountable that we gave in Theorem 1.14 uses completeness in an 
essential way, via the monotone sequence theorem. This might suggest that a complete 
metric space needs be large in some topological sense, in order to accommodate all possible 
limits of Cauchy sequences. However, it not so easy to make this intuition rigorous. After 
all, a metric space consisting of finitely many points is complete by default, so the number 
of points is not the relevant measure of size here. 

The Baire category theorem gives a precise formulation of this principle. The traditional 
statement divides subsets of a metric space.X into two categories. A set in the first category 
can be written as a countable union of nowhere dense sets. A set is called nowhere dense 
if its closure contains no interior points. In other words, .A is nowhere dense if .(A)◦ = ∅. 
These first-category sets are also called meager. As this terminology suggests, meager sets 
are considered small relative to the topology of . X . 

Example 3.50 Every countable subset of.Rn is meager, because a single point is obviously 
nowhere dense in the Euclidean topology. However, if we consider. Z as a metric space with 
the subspace topology inherited from . R, then for each .k ∈ Z, the  set  .{k} is both open and 
closed. In this topology, every point of . Z qualifies as an interior point, and hence the only 
nowhere dense set is the empty set. ♦ 

Example 3.51 The Cantor set .C consists of all real numbers in the interval .[0, 1] which 
admit a ternary expansion using only digits . 0 and . 2. That is, .x ∈ C if we can write 

. x =
∞∑
n=1

an
3n

,

where each .an is . 0 or . 2. The set of allowable sequences .(a1, a2, . . . ) is uncountable, by 
Cantor’s diagonal argument, and so . C is uncountable. 

A standard way to construct. C is to start from.C0 = [0, 1] and remove successive middle-
third intervals. The digit condition .a1 	= 1 corresponds to removing the middle third from 
.[0, 1] leaving.C1 = [0, 1

3 ] ∪ [ 23 , 1]. The condition.a2 	= 1 corresponds to cutting.( 19 ,
2
9 ) and 

.( 79 ,
8
9 ), and so on. The result is that 

. C =
∞⋂
n=0

Cn,

where each .Cn is a union of .2n closed intervals of length .3−n , as illustrated in Fig. 3.3. It  
follows from this construction that . C is closed and contains no open intervals. Therefore . C
is nowhere dense as a subset of . R. ♦
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Fig. 3.3 Steps in the Cantor set construction 

Baire’s second category consists of the sets which are not meager, i.e., sets which cannot 
be written as a countable union of nowhere dense sets. The standard formulation of Baire’s 
theorem says that a complete metric space is of the second category, i.e., not meager. We 
will first prove an equivalent statement: 

Theorem 3.52 Let .X be a complete metric space. Given a countable collection of open 
dense subsets .Un ⊂ X, the intersection .∩∞

n=1Un is dense in . X. 

Proof Suppose each .Un is open and dense in .X and let 

. E := ∩∞
n=1Un .

By Exercise 3.16, to show. E is dense in. X it suffices to prove that for every non-empty open 
set .V ∈ X , .E ∩ V is not empty. 

Let .V be a non-empty open set. Using the density of .Un we can construct a sequence of 
points .xn and radii .rn as follows. First choose .x1 ∈ V ∩U1 and .r1 ≤ 1 such that 

. Nr1(x1) ⊂ V ∩U1.

Then for each . n we choose .xn ∈ Nrn−1(xn−1) ∩Un and .rn ≤ 1/n so that 

. Nrn (xn) ⊂ Nrn−1(xn−1) ∩Un .

By construction, .d(xn, xm) ≤ 1/n for .m > n, so the sequence is Cauchy and we can take 
the limit .x := lim xn . The nested construction ensures that .x ∈ Nrn (xn) for all . n. It follows 
that .x ∈ V ∩Un for all . n, and therefore .x ∈ (∩∞

n=1Un) ∩ V . �

The corresponding result for closed sets is obtained by taking complements.
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Exercise 3.53 Show that a closed set has empty interior if and only if its complement is 
dense. 

If .X is written as a union of closed sets .∪Fn , then each .Fc
n is open and .∩Fc

n = ∅. Then 
Theorem 3.52 implies that .Fc

n is not dense for some . n. Combining this observation with 
Exercise 3.53 yields the following: 

Corollary 3.54 Let. X be a complete metric space. If.X = ∪∞
n=1Fn where each.Fn is closed, 

then at least one .Fn has a nonempty interior. 

Since the closure of a nowhere dense set has empty interior, the corollary implies in 
particular that complete metric spaces are not meager. Thus Corollary 3.54 is a statement of 
the Baire category theorem. 

The Baire category theorem leads to quick proofs of some rather deep results. For exam-
ple, we can rule out completeness for certain spaces: 

Example 3.55 We claim that there is no norm under which the vector space . V := {(a1,
a2, . . . ) : an ∈ C} is complete. Let .‖·‖ be a norm on . V . The subspaces 

. Vn := {(a1, . . . , an, 0, . . . )},

are finite-dimensional normed vector spaces. By Corollary 3.28, each .Vn is complete as 
a subspace and therefore closed as a subset. Moreover, .Vn has no interior points. There-
fore, each .Vn is nowhere dense and .V = ∪nVn is meager. By the Baire theorem, .V is not 
complete. ♦
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In this chapter we will discuss maps from one metric space to another. The special case of 
real- or complex-valued functions is of special importance and will be developed further 
in the next chapter. For now we focus on the most general definitions and properties. We 
start by introducing function limits and continuity, and then consider limits of sequences of 
functions. 

4.1 Continuity 

Let .(X , dX ) and .(Y , dY ) be metric spaces. On a domain .E ⊂ X , consider a function . f :
E → Y . We say that . f is continuous at .x0 ∈ E if for every .ε > 0 there exists .δ > 0 such 
that 

.dX (x, x0) < δ =⇒ dY ( f (x), f (x0)) < ε (4.1) 

for .x ∈ E . This condition is trivially satisfied if .x0 is isolated, because in this case we 
can choose . ε small enough that .Nε(x0) contains no point of .E other than . x0. If continuity 
holds at every point of the domain, then . f is said to be continuous “on . E .” 

Example 4.1 On. R consider the monomial function. f (x) = xn with.n ∈ N. (This proof of 
continuity should be familiar from calculus.) By the polynomial identity 

.xn − xn0 = (x − x0)(x
n−1 + xn−2x0 + · · · + xn−1

0 ), (4.2) 

we can estimate for .|x − x0| ≤ 1, 
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. 

∣
∣
∣xn−1 + xn−2x0 + . . . xn−1

0

∣
∣
∣ ≤ Cx0 ,

where 
. Cx0 = n(|x0| + 1)n−1.

This gives the estimate 
. | f (x) − f (x0)| ≤ Cx0 |x − x0|,

which establishes continuity at . x0. ♦ 

Example 4.2 Consider a linear map .T : Rn → R
m , which we can write in terms of an 

.m × n matrix . A: 
. T v = A · v.

In terms of the max norm 

. 

‖T v‖max = max
i

∣
∣
∣
∣

n
∑

j=1

Ai jv j

∣
∣
∣
∣

≤ C‖v‖max,

where .C = nmaxi j |Ai j |. This proves that .T is continuous with respect to the max norm, 
since by linearity 

. ‖T v − Tw‖max ≤ C‖v − w‖max.

♦ 

We saw that all finite-dimensional norms are equivalent in Theorem 3.27. Therefore, 
Example 4.2 shows that all linear maps on finite dimensional normed vector spaces are 
continuous. This is not true for infinite dimensional vector spaces. 

Example 4.3 Recall the spaces of sequences .�p defined in Example 3.4 and Exercise 3.5. 
Let .W denote the space . �1, equipped with the .�∞ norm 

. ‖α‖∞ = sup
j

|α j |.

Thus .W and .�1 denote the same set, but with different norms. 
Let.S : W → �1 denote the identity map.α 	→ α. Despite being a very simple linear map, 

. S is not continuous. For example, for .n ∈ N consider the sequence defined by 

. α = (1, . . . , 1
︸ ︷︷ ︸

n

, 0, . . . ).

Then.α ∈ W with .‖α‖∞ = 1. Since  

.‖Sα‖1 = ‖α‖1 = n,
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the norm of .Sα can be arbitrarily large relative to the norm of . α. 
On the other hand, the identity map in the direction .�1 → W is continuous, because 

.‖α‖∞ ≤ ‖α‖1 for all . α. ♦ 

Exercise 4.4 Let .(X , d) be a metric space. Given a non-empty subset .A ⊂ X the distance 
from a point . x to . A is defined as 

. d(A, x) := inf{d(y, x) : y ∈ A}

Show that .d(A, ·) is continuous as a function .X → R. 

Exercise 4.5 Suppose that . f : X → Y is continuous. For a subset .E ⊂ X , prove  that  

. f (E) ⊂ f (E).

The definition of continuity is closely related to the concept of a function limit. For 
. f : E → Y as above, for.y ∈ Y and.x0 a limit point of. E , we say that. f (x) → y as.x → x0, 
or 

. lim
x→x0

f (x) = y,

if for every .ε > 0 there is a .δ > 0 so that 

. dX (x, x0) < δ =⇒ dY ( f (x), x0) < ε

for .x ∈ E . Function limits can be equivalently formulated in terms of convergence of 
sequences, as in the following: 

Exercise 4.6 For a function . f : E → Y and.x0 a limit point of . E , show that . f (x) → y as 
.x → x0 if and only if . f (xn) → y for every sequence .(xn) ∈ E with .xn → x0. 

Note that in the function limit definition . p is assumed to be a limit point of the domain 
and it is irrelevant whether or not . f is defined at . p. Continuity is only defined at points in 
the domain. However, we noted that continuity holds trivially at an isolated point. We can 
thus clarify the relationship between continuity and function limits as follows: 

Lemma 4.7 The function . f : E → Y is continuous at .x0 ∈ E if and only if one of the 
following conditions holds: 

(i) .x0 is a limit point of .E and .limx→x0 f (x) = f (x0); 
(ii) .x0 is an isolated point of . E.
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The definition of continuity given at the start of this section is probably familiar to the 
reader from standard definition for real functions. The following result gives an equivalent 
topological formulation, which refers only to open sets and does not mention the distance 
function. 

Theorem 4.8 A map . f : E → Y is continuous if and only if the preimage of an open set in 
. Y is open relative to . E. 

Proof Assume that. f is continuous on. E , and let.U ⊂ Y be open. Note that there is nothing 
to prove if . f −1(U ) is empty. Suppose there is a point .x ∈ E such that . f (x) ∈ U . Since . U
is open, we can choose.ε > 0 so that.Nε( f (x)) ⊂ U . Condition (4.1) then gives.δ > 0 such 
that 

. f (Nδ(x) ∩ E) ⊂ Nε( f (x)), (4.3) 

implying that .Nδ(x) ∩ E ⊂ f −1(U ). This works for all .x ∈ f −1(U ), proving that . f −1(U )

is open relative to . E . 
The converse argument is similar. Suppose that the preimage of an open set is open. For 

.x ∈ E and .ε > 0 this implies that . f −1(Nε( f (x)) is open relative to . E . Therefore, . x has a 
neighborhood inside . f −1(Nε( f (x)). In other words, there exists .δ > 0 such that 

. Nδ(x) ∩ E ⊂ f −1(Nε( f (x)).

This is equivalent to the continuity condition (4.3). �

The topological interpretation of continuity expressed in Theorem 4.8 is convenient even 
in the metric case, because it often leads to cleaner arguments. For example, since preimages 
are easy to track through compositions of functions, we obtain a very short proof of the 
composition rule: 

Theorem 4.9 Suppose . f : X → Y and .g : Y → Z are continuous functions. The compo-
sition .g ◦ f is a continuous map .X → Z. 

Proof This result follows immediately from Theorem 4.8, since  

.(g ◦ f )−1(U ) = f −1(g−1(U )).

�

Since open sets are the complements of closed sets, and taking preimages preserves the 
complement relationship, Theorem 4.8 implies the corresponding statement for closed sets:
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Corollary 4.10 A map . f : E → Y is continuous if and only if the preimage of a closed set 
in . Y is closed relative to . E. 

It is important to remember that the continuity implies nothing about the image of an 
open or closed set. For example, a constant function is continuous by default, but the image 
of any open set is a single point. A function that takes open sets to open sets is called an 
open map. 

The images and preimages of a compact set under a continuous maps behave differently 
from open or closed sets. The preimage of a compact set need not be compact. For example, 
if . f : X → Y and . Y is compact, then . f −1(Y ) = X , whether or not .X is compact. On the 
other hand, the following result shows that continuous maps preserve compactness. 

Exercise 4.11 Prove that the image of a compact set under a continuous function is compact. 
Give two different proofs, first with the open cover definition and then using sequential 
compactness. ♦ 

When applied to real-valued functions, Exercise 4.11 shows that a continuous function 
on a compact domain achieves both a minimum and maximum value. 

Theorem 4.12 (extreme value theorem) If . f : X → R is continuous and .K ⊂ X is com-
pact, then there exist points .q± ∈ K such that 

. f (q−) ≤ f (x) ≤ f (q+)

for all .x ∈ K. 

Proof The hypotheses imply that . f (K ) is a compact subset of .R by Exercise 4.11. Exer-
cise 1.7 implies that there exists a sequence in . f (K ) converging to .sup f (K ). Since . f (K )

is closed and bounded, this implies that.sup f (K ) ∈ f (K ). Hence there exists.q+ ∈ K such 
that 

. f (q+) = sup f (K ).

The same reasoning applies to .inf f (K ). �

Another useful implication of Exercise 4.11 is a guarantee of continuity for inverse 
functions, provided the domain is compact. 

Theorem 4.13 If .K is compact and . f : K → Y is bijective and continuous, then . f −1 is 
continuous. 

Proof Bijectivity guarantees that the inverse function.g = f −1 is defined. Suppose. E ⊂ K
is closed. Then. E is compact by Lemma 3.39, and hence. f (E) is compact by Exercise 4.11.
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Since. f (E) = g−1(E), this proves that the preimage of a closed set under. g is closed. Hence 
. g is continuous by Corollary 4.10. �

The result of Theorem 4.13 can fail without the compactness assumption. For example, 
the function . f (θ) = eiθ defines a continuous and bijective map from .[0, 2π) to the unit 
circle in . C, but . f −1 is discontinuous at . 1. 

To conclude this section we consider the mapping properties of connected sets under 
continuous functions. (Connected sets were defined in Sect. 3.2.1.) 

Exercise 4.14 Prove that the image of a connected set under a continuous function is con-
nected. 

4.1.1 Uniform Continuity 

Suppose . f is continuous on a domain . E . Given  .x0 ∈ E and .ε > 0 we can choose . δ > 0
so that the continuity condition (4.1). This does not mean that the same choice of . δ works 
for every point, however. So we should really write . δ as .δx0 if we are making this choice at 
multiple points. 

Some applications, particularly in integration, require a stronger notion of continuity that 
eliminates the dependence on the point. A function . f : E → Y is uniformly continuous if 
for every .ε > 0 there exists .δ > 0 such that 

.d(p, q) < δ =⇒ d( f (p), f (q)) < ε (4.4) 

for all points .p, q ∈ E . 

Example 4.15 Consider again the real function . f (x) = xn as in Example 4.1. The ratio 
between . ε and . δ at . y was given by 

. Cy = n(|y| + 1)n−1.

For .n = 1 we have.Cy = 1 so this is uniform on all of . R. For .n > 1, it is easy to check that 
the function will not be uniformly continuous on all of . R. For example, if .x > 0 and.t > 0, 
then 

. (x + t)n − xn ≥ nxn−1t .

This difference becomes arbitrarily large as .x → ∞, for any fixed . t . 
On the other hand, if we restrict the domain to a compact interval .K then we can take . C

to be the maximum of .Cy over .K to conclude that 

. | f (x) − f (y)| ≤ C |x − y|

for .x, y ∈ K . Thus . f is uniformly continuous on any compact interval. ♦
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Example 4.16 Suppose . f (z) is a complex function defined by the power series 

. f (z) :=
∞
∑

k=0

ckz
k,

with radius of convergence .R > 0. We claim that . f is uniformly continuous on the disk 
.Dr := {|z| ≤ r} for .r < R. 

For .z, w ∈ Dr , the absolute convergence of the power series allows us to combine terms 

. f (z) − f (w) =
∞
∑

k=1

ck(z
k − wk).

We can then extract a factor of .(z − w) from each term, 

. f (z) − f (w) = (z − w)

∞
∑

k=1

ck
(

zk−1 + zk−2w + · · · + wk−1
)

,

and estimate 

.| f (z) − f (w)| ≤ |z − w|
∞
∑

k=1

k|ck |rk−1. (4.5) 

Since .k1/k → 1 by Example 1.4, the result of Exercise 1.20 implies that 

. lim sup (k|ck |)1/k = lim sup |ck |1/k . (4.6) 

Hence, by Theorem 2.16 the series in (4.5) is convergent for .r < R and we obtain 

.| f (z) − f (w)| ≤ Cr |z − w| (4.7) 

for .z, w ∈ Dr . This proves uniform continuity on .Dr for any .r < R. ♦ 

Examples 4.15 and 4.16 are illustrative of a general phenomenon, namely that the restric-
tion of a continuous function to a compact set is necessarily uniformly continuous. 

Exercise 4.17 Suppose that . f : (0, 1) → R is uniformly continuous. Prove that . f admits 
an extension to a continuous function on the interval .[0, 1]. 

In (4.7) we established uniform continuity by proving something stronger, a qualitative 
estimate on the distance between image points. We have actually seen the same notion in 
many previous examples. A function . f : E → Y is Lipschitz continuous if there exists a 
constant .c > 0 such that 

.d( f (x), f (y)) ≤ cd( f (x), f (y)) (4.8) 

for all .x, y ∈ E .
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Example 4.18 To illustrate the difference between uniform and Lipschitz continuity, con-
sider the function. f (x) = √

x on.[0, 1]. We can easily verify that . f is continuous on.[0, 1], 
and therefore uniformly continuous by Exercise 4.17. At. 0 it is straightforward to check that 
.
√
x → 0 as .x → 0, and at a point .y > 0 we can use the identity 

.
√
x − √

y = x − y√
x + √

y
. (4.9) 

However, (4.9) also shows that . f is not Lipschitz since the denominator on the right side 
approaches zero at the origin. ♦ 

A Lipschitz map for which the constant in (4.8) satisfies .c < 1 is called a contraction. 
Many applications of contractions are based on the following result, sometimes called the 
Banach fixed-point theorem. 

Exercise 4.19 Let .(X , d) be a complete metric space and suppose that . f : X → X is a 
contraction. For any .x1 ∈ X , prove that the sequence defined iteratively by . xk = f (xk−1)

converges to a unique point . y such that . f (y) = y. 

4.2 Sequences of Functions 

Consider a sequence of functions . fn : X → Y , where  .X and . Y are metric spaces. We say 
that .( fn) converges pointwise to a function . f if 

. lim
n→∞ fn(x) = f (x)

for each .x ∈ X . This is the default definition of convergence for function sequences, but 
it is too weak for many applications. Sometimes we need to insist on a uniform rate of 
convergence at all points. We say that . fn → f uniformly on a subset .A ⊂ X if 

. lim
n→∞

(

sup
x∈A

dY ( fn(x), f (x))

)

= 0. (4.10) 

In other words, for every .ε > 0 there exists .N ∈ N so that .n ≥ N implies that 

. dY ( fn(x), f (x)) < ε

for all .x ∈ A. 

Example 4.20 Consider the sequence . fn(x) = xn on the interval .[0, 1), as shown in Fig. 
4.1. Clearly . fn → 0 pointwise as .n → ∞. However, since
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. sup
x∈[0,1)

∣
∣xn

∣
∣ = 1

for all. n, the convergence fails to be uniform. The choice of domain makes all the difference 
here. Convergence is uniform on .[0, b] for any .b < 1, because 

. sup
x∈(0,b]

∣
∣xn

∣
∣ = bn

♦Example 4.21 Consider a power series 

. f (z) :=
∞
∑

k=0

ckz
k,

with radius of convergence.R > 0, as introduced in Sect. 2.4. We claim that the convergence 
is uniform on the closed disk.{|z| ≤ r} for.r < R. To see  this  pick.r < r1 < R. The definition 
of . R implies that 

. |ckzk | ≤
( |z|
r1

)k

for all but finitely many . k. For .|z| ≤ r this gives a uniform estimate 

. 

∞
∑

k=n

|ckzk | ≤
∞
∑

k=n

(
r

r1

)k

,

which shows that the series converges uniformly on .{|z| ≤ r}. ♦ 

Fig. 4.1 On.(0, 1), the functions.xn converge to . 0 pointwise as .n → ∞ but not uniformly
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Continuity of functions is not necessarily preserved under pointwise convergence. For 
instance, the functions . fn from Example 4.20 are continuous when extended to the domain 
.[0, 1], but the pointwise limit is discontinuous at .x = 1. Not coincidentally, this is the point 
where convergence fails to be uniform. The following result shows that uniform convergence 
does indeed preserve continuity. 

Exercise 4.22 Suppose each function. fn : E → Y is continuous at some.q ∈ E . If. fn → f
uniformly on . E , then . f is continuous at . q. ♦ 

On a metric space . X , we denote by .C(X;C) the space of continuous complex-valued 
functions. If .X is compact then each positive continuous function has a positive maximum 
value by Theorem 4.12. Thus we can define a metric based on the norm 

.‖ f ‖max := max
X

| f |. (4.11) 

To say that . fk → f in .C(X;C) means precisely that the sequence converges uniformly on 
. X . 

Exercise 4.23 Assuming .X is compact, prove that .C(X;C) is complete under the metric 
defined by the norm (4.11). 

For real-valued continuous functions on a compact metric space, uniform convergence 
can be guaranteed if oscillations are avoided. A sequence of real-valued functions . fn is 
monotone if the numerical sequence .( fn(x))∞n=1 is monotone for each . x . Note that for the 
following result we need an extra assumption that the limit function is continuous, since this 
is not guaranteed by the other hypotheses. 

Theorem 4.24 (Dini) Suppose .(X , d) is a compact measure space and let .( fn) be a 
sequence in .C(X ,R) converging pointwise to . f ∈ C(X ,R). If  .( fn) is monotone then 
. fn → f in .C(X ,R), i.e., the convergence is uniform. 

Proof We can assume that the sequence is increasing by switching . fn to .− fn if needed. 
Given .ε > 0, define the sets 

. Kn := {x ∈ K : f (x) − fn(x) ≥ ε}.

Since .Kn is the preimage of the closed set .[ε, ∞) under the continuous function . f − fn , 
.Kn is closed. Thus .Kn is compact since .X is compact. 

The fact that .( fn) is increasing means the sets are nested .Kn ⊃ Kn+1. Furthermore, the 
pointwise convergence . fn → f implies that .∩Kn = ∅. By Exercise  3.42 one of the sets, 
say .KN must be empty. This means that
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.‖ f − fn‖max < ε for all n ≥ N .

�

4.3 Stone-Weierstrass Theorem 

In 1885 Karl Weierstrass proved that a continuous function on a compact interval in. R admits 
a uniform approximated by polynomials. This result admits a broad generalization in the 
context of compact metric spaces, proven by Marshall Stone in 1937. 

For a compact metric space. X , let.C(X;F) denote the space of complex-valued functions 
.X → F, where  . F stands for the field .R or . C. We give this space the topology of uniform 
convergence as defined by the max norm (4.11). The space .C(X;F) also has the structure 
of an algebra over . F, meaning that it is closed under the operations of pointwise addition 
and multiplication, 

. ( f + g)(x) := f (x) + g(x), ( f g)(x) := f (x)g(x),

as well as scalar multiplication. We first consider the real case. 

Theorem 4.25 (Stone-Weierstrass) For a compact metric space . X, let .A be a subalgebra 
of .C(X;R) such that 

(i) .A contains the constant functions; 
(ii) .A separates points, meaning given .p �= q ∈ K, there exists . f ∈ A with . f (p) �= f (q). 

Then .A is dense in .C(X;R). 

The classical Weierstrass theorem is the special case with .X = [a, b] ⊂ R and .A the 
algebra of real polynomials on.[a, b]. This clearly satisfies the hypotheses, and so we imme-
diately obtain the folllowing: 

Corollary 4.26 Let . f : [a, b] → R be continuous. Given .ε > 0, there exists a polynomial 
.p(x) such that 

. | f (x) − p(x)| ≤ ε

for all .x ∈ [a, b]. 

We will present an elementary proof of Theorem 4.25 adapted from [Brosowski-Deutsch 
1981]. The first step is to show that the algebra .A allows us approximate the indicator 
function of a set.
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Lemma 4.27 Suppose .A ⊂ C(X;R) satisfies the hypotheses of Theorem 4.25. Given a 
closed set .B ⊂ X and a point .p /∈ B, there  exists  a open set .Vp � p, disjoint from . B, with 
the following property: Given .ε > 0 there exists .ψ ∈ A with .0 ≤ ψ ≤ 1 and satisfying 

. ψ
∣
∣
Vp

< ε, ψ
∣
∣
B > 1 − ε.

Proof By the assumptions on . A, for each .x ∈ B we can find a function that vanishes at . p
but not at . x . Squaring this function gives .hx ∈ A such that .hx (p) = 0 and.hx (x) > 0. And  
after multiplying by a constant, if necessary, we can assume.0 ≤ hx ≤ 1. 

Because. B is compact and the sets.{hx > 0} are open, there exist a finite number of points 
.x1, . . . , xm such that 

. B ⊂
m
⋃

j=1

{

hx j > 0
}

.

The function .h ∈ A defined as the average 

. h := 1

m

m
∑

j=1

h p j

then satisfies .0 ≤ h ≤ 1, .h(p) = 0 and .h > 0 on . B. 
To define the neighborhood .Vp, by the extreme value theorem (Theorem 4.12) we can 

choose .c > 0 so that 
. h|B > c.

We then set 
. Vp := {h < c/2}.

To complete the proof, the plan is to use . h to construct the function . ψ for a given . ε. 
For .t ∈ [0, 1] and .n ∈ N we have the basic inequalities 

.1 − nt ≤ (1 − t)n ≤ 1

1 + nt
. (4.12) 

The left-hand side is the classic Bernoulli inequality, which is easily proven by induction on 
. n. The right-hand inequality follows from Bernoulli by the observation that. (1 − t)(1 + t) ≤
1. (Of course, these are also easily proven by calculus methods.) 

For .k, n ∈ N, if we set  
. ψ := 1 − (1 − hk)n,

then (4.12) and the bounds on . h we have 

. ψ|Vp <
nck

2k
, ψ|B > 1 − 1

nck
.

If we then set .n = lk for .l ∈ N then the estimates reduce to
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. ψ|Vp < ak, ψ|B > 1 − bk,

where .a = lc/2 and .b = 1/lc. Since  .c ∈ (0, 1), we can choose an integer .l ∈ (1/c, 2/c), 
which gives .a < 1 and .b < 1. The desired .ψ is then obtained by taking . k sufficiently 
large. �

Figure 4.2 illustrates the functions defined in Lemma 4.27 in the polynomial case. The 
tricky issue in this construction is the need to fix a neighborhood that is independent of . ε. 
The uniformity provided by Lemma 4.27 allows us to improve the result to the following: 

Corollary 4.28 Suppose .A and .B are disjoint closed subsets of . X. For  .0 < ε < 1 there 
exists .χ ∈ A such that .0 ≤ χ ≤ 1 and 

. χ
∣
∣
A < ε, χ

∣
∣
B > 1 − ε.

Proof Since . A is compact, we can cover it cover it with a finite number of neighborhoods 
of the type constructed in Lemma 4.27, 

. A ⊂ V1 ∪ · · · ∪ Vm .

For .ε > 0 we can then construct functions .ψ1, . . . , ψm ∈ A such that .0 ≤ ψ j ≤ 1 and 

. ψ j
∣
∣
Vj

<
ε

m
, ψ j

∣
∣
B > 1 − ε

m
.

The function .χ := ∏m
j=1 ψ j then has the stated properties. �

Corollary 4.28 allows us to construct approximate step functions using elements of . A. 
With these approximations available, it is relatively straightforward to establish the uniform 
approximation of continuous functions. 

Fig.4.2 In the polynomial case we could take.h(x) = (x − p)2 in Lemma 4.27. The plot on the right 
shows the function. ψ associated to the subset .B
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Proof of Theorem 4.25 Suppose that .A ⊂ C(X;R) satisfies the two hypotheses. Given 
. f ∈ C(X;R), our goal is to approximate . f uniformly from within . A. Because .A contains 
constants and . f is bounded, we can assume that .0 ≤ f ≤ 1. 

For .n ∈ N and . j = 0, . . . , n, define the disjoint pairs of closed sets 

. A j :=
{

f ≤ j

n

}

, Bj :=
{

f ≥ j + 1

n

}

.

For each . j we apply Corollary 4.28 to define .χ j ∈ A satisfying .0 ≤ χ j ≤ 1 and 

.χ j
∣
∣
A j

<
1

n
, χ j

∣
∣
Bj

> 1 − 1

n
. (4.13) 

Our proposed approximation to . f is 

. gn := 1

n

n−1
∑

j=0

χ j .

Given a point .x ∈ X there exists a unique .k ∈ {0, . . . , n − 1} so that 

.
k

n
< f (x) ≤ k + 1

n
. (4.14) 

This means that .x ∈ A j for . j ≥ k, which gives an estimate 

. 

gn(x) ≤ 1

n

k−1
∑

j=0

1 + 1

n

n−1
∑

j=k

1

n

≤ k + 1

n

< f (x) + 1

n
.

On the other hand, (4.14) implies that .x ∈ Bj for . j ≤ k − 1, which gives 

. 

gn(x) ≥ 1

n

k−1
∑

j=0

(

1 − 1

n

)

≥ k − 1

n

≥ f (x) − 2

n
.

Since these estimates apply to all .x ∈ X , we have shown  that  

.‖ f − gn‖max ≤ 2

n
.
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Therefore .gn → f in .C(X;R). �
With the real case established, the complex version is a relatively simple extension. 

Corollary 4.29 Let. X be a compact metric space, and suppose. B is a subalgebra of. C(X;C)

which is closed under complex conjugation. If . B contains the constant functions and sepa-
rates points, then . B is dense in .C(X;C). 

Proof Let .BR denote the set of real-valued functions in . B. Since  . B contains constants, it 
follows that .BR contains the real-valued constant functions. By hypothesis, for .p �= q in . X
there exists . f ∈ B such that . f (p) �= f (q). After shifting by a constant and rescaling, we 
can assume that . f (p) = 1 and. f (q) = 0. Then, because. B is closed under conjugation, the 
function .u := f + f lies in .BR. Since  .u(p) �= u(q), this proves that .BR separates points. 
Therefore.BR is dense in.C(X;R) by Theorem 4.25. A function in.C(X;C) can therefore be 
approximated uniformly from. B by approximating its real and imaginary parts by functions 
in .BR. �

Example 4.30 For.X = [0, π], let. B be the algebra of complex trigonometric polynomials, 
i.e., linear combinations of the complex exponentials. fk(x) := eikx for.k ∈ Z. The constant 
functions are included as multiples of. f0, and. B is clearly closed under complex conjugation. 
Since . B contains the function .cos x = 1

2 ( f1(x) − f−1(x)), which is injective on .[0, π], the  
algebra separates points. Therefore, the Stone-Weierstrass theorem implies that functions in 
.C[0, π] can be uniformly approximated by trigonometric polynomials. ♦



5Real Functions 

In this final chapter our goal is to illustrate the tools developed in previous sections in the 
most basic context, namely real-valued functions defined on intervals. We will review some 
of the fundamentals of calculus, but the main point here is to demonstrate some concrete 
applications of the abstract concepts of metric topology. 

5.1 Limits and Continuity 

Let.I ⊂ R be an interval as defined in Sect. 1.1. For a function. f : I → R and.x0 a point in 
the closure . I , the function limit 

. lim
x→x0

f (x) = y, (5.1) 

means that for every .ε > 0, there exists .δ > 0 so that .| f (x) − y| < ε for all .x ∈ E with 
.|x − x0| < δ. 

The algebraic properties of sequence limits derived in Exercises 1.6 and 1.8 carry over 
directly to real function limits, with essentially the same proofs. 

Lemma 5.1 Let. f and. g be real functions defined on an interval.I ⊂ R. For.x0 ∈ I suppose 
that .x0 is a limit point of .E and that . f (x) → a and .g(x) → b as .x → x0. Then 

. lim
x→x0

[ f (x) + g(x)] = a + b, lim
x→x0

f (x)g(x) = ab.

Furthermore, If . f (x) ≤ g(x) for all .x ∈ I then .a ≤ b. 

Real function limits are extended to cases where either.x0 or. y is.±∞by using the topology 
of .(R∞, d∞) introduced in Example 3.2. This interpretation agrees with the definition of 
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(5.1) when .x0 and . y are both finite, and also covers all of the possible infinite cases. Since 
the distance function .d∞ is cumbersome to use in practice, so we normally do not refer 
to this directly. Instead, we can formulate the infinite limits in terms of neighborhoods. In 
the topology of .(R∞, d∞) a neighborhood of .+∞ has the form .(m, ∞] for .m ∈ R, and  
a neighborhood of .−∞ can be written as .[−∞,m) of the infinite cases. The statement 
. f (x) → ∞ as.x → x0 ⊂ R therefore means that for each.m > 0, there exists.δ > 0 so that 
for .x ∈ E , 

. f (x) > m if |x − x0| < δ.

Similarly for .y ∈ R and . I unbounded above, the statement . f (x) → y as .x → ∞ means 
that for every .ε > 0 there exists .m > 0 so that 

. | f (x) − y| < ε if x > m.

The algebraic results of Lemma 5.1 obviously require the limits . a and. b to be finite, but the 
ordering statement still applies to limits of .±∞. 

As in the sequence case, the crucial limitation on the use of Lemma 5.1 is the hypothesis 
that the limits exist. We can work around this using upper and lower function limits. For 
. f : I → R and real .x0 ∈ I , define  

. lim sup
x→x0

f (x) := inf
δ>0

[
sup{ f (x) : x ∈ E, |x − x0| < δ}]

and 
. lim inf
x→x0

f (x) := sup
δ>0

[inf{ f (x) : x ∈ E, |x − x0| < δ}] .

The infinite cases are treated similarly. For example, if . I is unbounded above then 

. lim sup
x→∞

f (x) := inf
m>0

[
sup{ f (y) : y ∈ E, x > m}] .

By the supremum property of. R, these upper and lower limits exist (as values in.R∞) under 
any circumstances. 

The main useful properties of upper and lower function limits are summarized in the 
following pair of lemmas, whose proofs are very similar to the sequential cases: 

Lemma 5.2 For real-valued functions defined on an interval .I ⊂ R and . α a limit point of 
. I in .R∞: 

(i) . f (x) has limit as .x → α if and only if 

. lim inf
x→α

f (x) = lim sup
x→α

f (x).

(ii) If . f ≤ g on . I then
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. lim inf
x→α

f (x) ≤ lim inf
x→α

g(x), lim sup
x→α

f (x) ≤ lim sup
x→α

g(x).

(iii) If . f and . g are bounded then 

. lim sup
x→α

[ f (x) + g(x)] ≤ lim sup
x→α

f (x) + lim sup
x→α

g(x)

and 
. lim inf

x→α
[ f (x) + g(x)] ≥ lim inf

x→α
f (x) + lim inf

x→α
g(x)

(iv) If . f (x) → c ∈ R as .x → α and . g is bounded then 

. lim sup
x→α

f (x)g(x) = c lim sup
x→α

g(x), lim inf
x→α

f (x)g(x) = c lim sup
x→α

g(x)

A common strategy for proving that . f (x) → y as .x → α is to show that 

. lim sup
x→α

| f (x) − y| = 0. (5.2) 

This proves that the limit exists, since we automatically have .lim inf |. . .| ≥ 0. Lemma 5.2 
provides the essential tools to estimate the left side of (5.2). 

5.1.1 Asymptotics and Order Notation 

In this section we will introduce some helpful notations used to describe the limiting behavior 
of a function. These conventions first appeared in analytic number theory in the early 20th 
century, and have since become widely used in analysis and many other fields. 

The first order notation, generally referred to as “big O,” is to write 

. f (x) = O(φ(x)) as x → α (5.3) 

to signify that . f (x)/φ(x) is bounded as .x → α. For  .α ∈ R this means that there exists 
.C, r > 0 such that 

. | f (x)| ≤ C |φ(x)| for 0 < |x − α| < r .

The infinite cases are interpreted using neighborhoods in.R∞. For example. f (x) = O(φ(x))
as .x → ∞ means there exist .C,m > 0 such that 

. | f (x)| ≤ C |φ(x)| for x > m.

Exercise 5.3 For the polynomial.p(x) = anxn + · · · + a1x , where.n > 1, show that. p(x) =
O(xn) as .x → ∞ and .p(x) = O(x) as .x → 0.
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The use of an equals sign in (5.3) might seem inconsistent, since .O(φ) describes an 
estimate rather than an exact limit. The convention here is to interpret .O(φ) as an unspec-
ified function, so that it can be manipulated like other functions. This makes the notation 
particularly useful for describing error terms. For example, from the power series expansion 
of .sin(x) we can deduce that 

. sin x = x + O(x3) (5.4) 

as .x → 0. 

Exercise 5.4 Suppose . f (x) is  given by a power series .
∑∞

n=0 anx
n , with radius of conver-

gence .R > 0. For .m ∈ N show that 

. f (x) =
m−1∑

n=0

anx
n + O(xm)

as .x → 0. 

The second order notation, referred to as “little o,” is to write 

. f (x) = o(φ(x)) as x → α (5.5) 

to signify that 

. lim
x→α

f (x)

φ(x)
= 0.

For example, we can paraphrase the function limit . f (x) → y as .x → α by writing that 

. f (x) = y + o(1).

An error of .o(1) simply indicates a term that goes to zero in the limit. 
The final notation to introduce here describes a more precise relationship between func-

tions in the limit. We say that . f is asymptotic to . φ, written as 

. f (x) ∼ φ(x) as x → α, (5.6) 

if 

. lim
x→α

f (x)

φ(x)
= 1.

For example, from (5.4) we can write 

. sin x ∼ x as x → 0,

if we are only interested in the limiting behavior. Unlike the order notations previously 
introduced, the definition (5.6) is clearly an equivalence relation. Since .∼ can be used
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for more general equivalence relations, the use of .∼ to denote an asymptotic needs to be 
indicated explicitly, if it is not clear from context. 

Exercise 5.5 Show that . f (x) ∼ φ(x) as .x → α if and only if 

. f (x) = φ(x) + o(φ(x)).

5.1.2 Continuous Functions 

According to the general definition from Sect. 4.1, a function. f : I → R is continuous at a 
point .x0 ∈ I if for any .ε > 0 there exists .δ > 0 such that 

. | f (x) − f (x0)| < ε

for all .x ∈ I with .|x − y| < δ. In terms of the order notation introduced in Sect. 5.1.1, this 
could be written more succinctly as 

. f (x) = f (x0) + o(1) as x → x0.

There are some other equivalent ways to describe continuity. By Exercise 4.6 we could say 
that. f is continuous at.x0 if and only if. f (yn) → f (x0) for every convergent sequence. yn →
x0 in. I . For continuity on the full interval, the topological formulation given in Theorem 4.8 
also applies: . f is continuous on. I if and only if . f −1(U ) is open relative to. I for every open 
set .U ⊂ R. 

By the same basic arguments used for Lemma 5.1, we can see that continuity is preserved 
under algebraic operations: 

Lemma 5.6 If . f and . g are continuous real-valued functions, then so are . f + g and . f g. 

We have already noted that monomials are continuous in Example 4.1, so Lemma 5.6 
implies that all polynomials are continuous. That simple argument does not extend to power 
series, because linearity allows only finite linear combinations, but we have already dealt with 
continuity for power series in Example 4.16. We have thus already established continuity 
for the most common classes of functions: polynomials, exponentials, trigonometric, etc. 
These cases are presumably already familiar from calculus. 

Other properties of continuous functions have already been covered in the general case in 
Sect. 4.1. In Exercise  4.14 we saw that continuous functions map connected sets to connected 
sets. And in Theorem 3.20 we showed that the connected subsets of .R are precisely the 
intervals. Together, these results yield the following:
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Theorem 5.7 (intermediate value) If . f is a real-valued continuous function defined on an 
interval . I , then . f (I ) is an interval. 

Exercise 5.8 For a function . f : [a, b] → R, define the graph 

. �( f ) := {(x, f (x)) : x ∈ [a, b]} ⊂ R
2.

Prove that . f is continuous on .[a, b] if and only if .�( f ) is compact. 

At a point of discontinuity we sometimes want to compare separate limits from the two 
sides. Suppose that . f is defined on an open interval .(a, b). For  .x0 ∈ (a, b). The left and 
right limits, 

. lim
x→x+

0

f (x), lim
x→x−

0

f (x),

are defined by restricting to the subdomains with .(x0, b) and .(a, x0), respectively. The left 
and right limits may exist in cases where the full limit does not. For example, if .	x
 denotes 
the greatest integer function, then for .n ∈ Z, 

. lim
x→n+	x
 = n, lim

x→n−	x
 = n − 1.

A singularity of this type, where the left and right limits exist but are not equal, is called a 
jump discontinuity. 

A real function is increasing if. f (x) ≤ f (y) for all.x < y and decreasing if. f (x) ≥ f (y). 
The function is called monotonic if it is either increasing or decreasing. For each jump 
discontinuity, we can choose a rational number that lies strictly between the left and right 
limits. If the function is monotonic, then the rational numbers so assigned will be distinct. 
Since there are only countably many rationals to choose from, this implies the following: 

Exercise 5.9 For a monotonic function . f : I → R, prove that the set of points of discon-
tinuity is at most countable and all discontinuities are jumps. 

5.2 Differentiation 

A function . f : I → R is differentiable at .x ∈ I if the limit 

. f ′(x) := lim
t→0

f (x + t) − f (x)

t
, (5.7) 

called the derivative, exists. We say that. f is differentiable on. I if. f ′(x) exists for all.x ∈ I . 
The derivative function is also commonly written as 

. f ′ = d f
dx ,
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Fig. 5.1 A function and its 
tangent line approximation at 
. x0

to reflect its definition as an infinitesimal limit of difference quotients. 
In terms of our order notation, the definition of . f ′(x0) is equivalent to the statement 

. f (x) = f (x0) + f ′(x0)(x − x0) + o(x − x0), (5.8) 

as .x → x0. Existence of the derivative is thus equivalent to an error estimate on the linear 
approximation given by the tangent line, as illustrated in Fig. 5.1. 

We assume that basic derivative calculations are already familiar to the reader, but we 
will go through a few examples just to illustrate the definition. 

Example 5.10 To differentiate the monomial function. f (x) = xn for.n ∈ N, we rewrite the 
identity (4.2) as  

. 
yn − xn

y − x
= yn−1 + yn−1x + · · · + xn−1.

Taking .y → x thus gives . f ′(x) = nxn−1. ♦ 

Example 5.11 Consider the exponential function as defined in Example 2.15, restricted 
to a real variable. By the addition formula of Lemma 2.19, the difference quotient can be 
factored: 

.
ex+t − ex

t
= et − 1

t
ex . (5.9) 

From the power series expansion we can see that 

. lim
t→0

et − 1

t
= 1.

Hence the limit .t → 0 in (5.9) exists and yields the familiar formula: 

.
d

dx
ex = ex . (5.10) 

♦
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The basic properties of the derivative are presumably well-known to the reader, but it is 
worth recalling the proofs. These are essentially direct applications of the algebraic identities 
for function limits proven in Lemma 5.1. 

Exercise 5.12 Show that a real function that is differentiable at a point is also continuous 
at that point. 

Exercise 5.13 Let. f and. g be differentiable functions.I → R. Prove  that. f + g and. f g are 
differentiable, with 

. ( f + g)′ = f ′ + g′, ( f g)′ = f ′g + f g′.

Exercise 5.13 implies in particular that the set of differentiable functions is a vector space, 
and the derivative operator is a linear map. 

The last basic fact we need to review is the chain rule, which has a slightly trickier proof 
than the exercises above. 

Theorem 5.14 Suppose that. f : I → R and.g : J → R are differentiable functions defined 
on intervals such that . f (I ) ⊂ J . Then the composition .g ◦ f is differentiable and 

. (g ◦ f )′ = (g′ ◦ f ) f ′.

Proof Fix a point .x ∈ I , and let .y = f (x). For  . s small enough that .y + s ∈ J , define the 
function 

. η(s) :=
{

g(y+s)−g(y)
s , s 
= 0,

g′(y), s = 0,

which is continuous because . g is differentiable. The difference quotient for .g ◦ f can then 
be written 

.
g( f (x + t)) − g( f (x))

t
= η( f (x + t) − f (x))

(
f (x + t) − f (x)

t

)
for t 
= 0. (5.11) 

Since . η and . f are continuous, 

. lim
t→0

η( f (x + t) − f (x)) = η(0) = g′(y).

We can thus take the limit .t → 0 in (5.11) to obtain 

.(g ◦ f )′(x) = g′(y) f ′(x).

�

A function . f : I → R is convex if for all points .x, y ∈ I and .t ∈ [0, 1],
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.(1 − t) f (x) + t f (y) ≥ f ((1 − t)x + t y). (5.12) 

The left-hand side of (5.12) is the interpolation between the values of . f at . x and . y, while 
the right is . f evaluated at the corresponding interpolated point. Thus convexity means that 
in the graph the secant lines lie above the curve. In calculus such functions are also called 
concave up. For a differentiable function, we can express this in terms to the tangent line 
approximation given by (5.8). 

Exercise 5.15 Suppose . f is a differentiable function on an open interval . I . Prove  that  . f
is convex if and only if for each .x0 ∈ I the graph of . f lies above the tangent line at . x0, 
meaning 

. f (x) ≥ f (x0) + f ′(x0)(x − x0) (5.13) 

for all .x ∈ I . 

Example 5.16 The exponential function is convex, as illustrated in Example 5.2. While 
the inequality (5.12) is not so obvious in this case, the tangent condition (5.13) is easily 
checked. By the addition rule (Lemma 2.19) and the derivative formula (5.10), it suffices to 
show that 

.ex ≥ 1 + x (5.14) 

for all .x ∈ R. For  .x ≥ 0 this follows from the positivity of the exponential power series 
coefficients, and the inequality is trivial for .x ≤ −1 because .ex > 0. For  .−1 < x < 0, we  
can compare the exponential and geometric series, 

. e−x =
∞∑

n=0

(−x)n

n! ≤
∞∑

n=0

(−x)n = (1 + x)−1.

Taking the reciprocal gives (5.14) for .x ∈ (−1, 0). ♦ 

Fig. 5.2 The exponential as an 
example of a convex function
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5.2.1 Differentiation of Power Series 

In Sect. 2.4 we defined exponential and trigonometric functions in terms of power series. 
Since most of the important real functions admit a local power series expansion, it is useful to 
study the differentiability of power series in general. We are considering only real derivatives 
here, but similar arguments apply to complex derivatives. 

Consider a real function . f defined as 

. f (x) =
∞∑

k=0

ckx
k (5.15) 

for .ck ∈ R. We know from Theorem 2.18 that . f (x) converges on an interval .(−R, R) with 
. R given by the formula (2.9). We will always assume that .R > 0. 

The differentiation of a single term from the series is covered by Example 5.10, and by 
linearity this familiar formula applies to polynomials. It turns out that we can differentiate 
the power series (5.15) by applying the same rule to each term. However, since the series is 
defined as a limit, this does not immediately follow from the polynomial formula. 

Theorem 5.17 The function . f defined by the power series (5.15) is differentiable on 
.(−R, R), with 

. f ′(x) =
∞∑

k=1

kckx
k−1.

Proof Define . fn as the partial sum 

. fn(x) :=
n∑

k=0

ckx
k .

This is just a polynomial and so we already know that . f ′
n = gn , where  

. gn(x) :=
n∑

k=1

kckx
k−1.

The calculation (4.6) from Example 4.16 shows that the.gn are partial sums of a power series 

. g(x) :=
∞∑

k=1

kckx
k−1

that converges on the same interval .(−R, R). 
For.x ∈ (−R, R) our goal is to show that. f ′(x) = g(x). Replacing. f by. fn in the differ-

ence quotient gives
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.

∣
∣∣
∣
f (y) − f (x)

y − x
− g(x)

∣
∣∣
∣ ≤

∣
∣∣
∣
fn(y) − fn(x)

y − x
− gn(x)

∣
∣∣
∣ + |gn(x) − g(x)|

+
∣∣
∣∣
∣

1

y − x

∞∑

k=n+1

ck(y
k − xk)

∣∣
∣∣
∣

(5.16) 

for .y 
= x . Let .ε > 0. For the third term on the right we estimate as in (4.5) from Exam-
ple 4.16, using  

. 
1

y − x

∞∑

k=n+1

ck(y
k − xk) =

∞∑

k=n+1

ck(y
k−1 + · · · + xk−1)

For . r such that .|x | < r < R we can assume that .|y| < r also. Then 

. 

∣
∣∣
∣∣

1

y − x

∞∑

k=n+1

ck(y
k − xk)

∣
∣∣
∣∣
≤

∞∑

k=n+1

k|ck |rk−1.

Since the sum on the right is convergent for .r < R, for . n sufficiently large we have 

. 

∣∣
∣∣
∣

1

y − x

∞∑

k=n+1

ck(y
k − xk)

∣∣
∣∣
∣
< ε

for .|y| < r . Furthermore, since .gn → g on this interval, we can assume that . n is chosen so 
that 

. |gn(x) − g(x)| < ε.

For this value of . n, (5.16) reduces to 

.

∣∣
∣∣
f (y) − f (x)

y − x
− g(x)

∣∣
∣∣ ≤

∣∣
∣∣
fn(y) − fn(x)

y − x
− gn(x)

∣∣
∣∣ + 2ε. (5.17) 

By Lemma 5.2, we can take the.lim sup as.y → x on both sides of (5.16), and since. f ′
n = gn

the first term on the right drops out in the limit. This leaves 

. lim sup
y→x

∣
∣∣
∣
f (y) − f (x)

y − x
− g(x)

∣
∣∣
∣ ≤ 2ε.

Since. ε was arbitrary, this proves that the.lim sup is equal to zero, and hence by Lemma 5.2, 

. lim
y→x

∣
∣∣
∣
f (y) − f (x)

y − x
− g(x)

∣
∣∣
∣ = 0.

We have thus shown that . f ′(x) = g(x). �
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Note that in the final stage of the proof we could not simply take the limit as . y → x
on both sides of (5.17), because the limit on the left is not yet known to exist. The . lim sup
provides a good way to handle such situations. 

5.2.2 Higher Derivatives 

If . f is a differentiable function and. f ′ is also differentiable at . x , then the second derivative 
is defined as 

. f ′′(x) := d

dx
f ′(x).

Exercise 5.18 Suppose that . f is twice differentiable on an open interval . I and convex. 
Prove that . f ′′ > 0 at all points. 

Higher derivatives, if they exist, are denoted as 

. f (n)(x) := dn

dxn
f (x).

For a function represented by power series, the differentiation formula of Theorem 5.17 can 
be applied repeatedly, since the radius of convergence stays fixed. Hence that theorem has 
the following: 

Corollary 5.19 Suppose that . f (x) is defined near .x0 by the power series 

. f (x) =
∞∑

k=0

ck(x − x0)
k,

with radius .R > 0. Then . f differentiable to all orders and the coefficients satisfy 

.ck = 1

k! f
(k)(x0). (5.18) 

The converse to Corollary 5.19 is false. Some infinitely differentiable functions cannot 
be represented as a power series. 

Example 5.20 For .x ∈ R let 

. f (x) :=
{
e−1/x2 , x 
= 0,
0, x = 0,
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Fig. 5.3 The graph of the function from Example 5.20 

as pictured in Fig. 5.3. Away from  .x = 0 this can be differentiated by the standard rules. 
And we can deduce that . f (n)(0) = 0 for all . n from the fact that 

. lim
x→0

e−1/x2

xn
= 0

for all . n. If  . f admitted a power series expansion at .x = 0, then the coefficients would be 
given by (5.18). Since these are all zero, there is no such expansion. ♦ 

We say that . f is .Cm , or “.m-times continuously differentiable”, if the derivatives . f (n)

exist for all .n ≤ m and . f (m) is also continuous. A function is said to be .C∞, or  infinitely 
differentiable if derivatives exist to all orders. Corollary 5.19 shows that power series define 
.C∞ functions. 

5.3 The Mean Value Theorem 

Many theoretical results involving the derivative are established using the mean value the-
orem. To set up the proof we first consider extremal points. A real-valued function . f has a 
local maximum at .x0 if there exists .δ > 0 so that 

. f (x) ≤ f (x0) for |x − x0| < δ. (5.19) 

Similarly, . f has a local minimum at .x0 if there exists .δ > 0 such that 

. f (x) ≥ f (x0) for |x − x0| < δ. (5.20) 

A point that is either a local minimum or maximum is called a local extremum. 

Exercise 5.21 Suppose. f is a differentiable real-valued function defined on an open interval 
. I . If .x0 ⊂ I is a local extremum, show that . f ′(x0) = 0. 

Theorem 5.22 (mean value) Suppose . f : [a, b] → R is a continuous function and that . f
is differentiable on .(a, b). There exists .t ∈ (a, b) such that
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Fig. 5.4 The original function 
. f is modified to create. h, 
flattening the secant line 
between. a and. b

. 
f (b) − f (a)

b − a
= f ′(t).

Proof For convenience let .m denote the slope of the secant line, 

. m := f (b) − f (a)

b − a
.

Then the function .h(x) = f (x) − mx satisfies .h(a) = h(b), as illustrated in Fig. 5.4. By  
the extreme value theorem (Theorem 4.12), . h attains a maximum and minimum value in 
.[a, b]. If these both occur at endpoints, then . h is constant and . f ′ = m at all points. If . h is 
not constant then at least one extremum must occur at an interior point. If we let . t denote 
such a point, then Exercise 5.21 implies .h′(t) = 0, which yields . f ′(t) = m. �

One immediate application is a relation between the monotonicity of a function and the 
sign of its derivative. It is already clear that . f ′ ≥ 0 for a differentiable increasing function, 
because the difference quotients in (5.7) are positive. Similarly, an decreasing function has 
. f ′ ≥ 0. The mean value theorem clearly implies the converse statement: 

Corollary 5.23 A differentiable function . f : I ∈ R is increasing if and only if . f ′ ≥ 0 on . I
and decreasing if and only if . f ′ ≤ 0. 

We can carry the conclusion of Corollary 5.23 further if the derivative function has no 
zeros. 

Theorem 5.24 (inverse function) On an open interval . I suppose that . f : I → R is dif-
ferentiable with . f ′(t) 
= 0 for all .t ∈ I . Then . f is injective and the inverse function 
. f −1 : f (I ) → I is differentiable. At the point .y = f (x), 

.( f −1)′(y) = 1

f ′(x)
.
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Proof We can assume that. f ′ > 0 by replacing. f by.− f if necessary. Theorem 5.22 implies 
that . f is strictly increasing and therefore injective. This defines . f −1 as a function on . J =
f (I ). We know that . f maps intervals to intervals by Theorem 5.7, and from the fact that . f
is strictly increasing we can deduce that . f maps open intervals to open intervals. It follows 
that . J is an open interval and . f −1 is continuous. 

To see that . f −1 is differentiable, let .y = f (x) and .y0 = f (x0) for .x, x0 ∈ I . By conti-
nuity, .y → y0 as .x → x0. Since . f ′(x0) 
= 0 we can replace the variables to see that 

.
1

f ′(x0)
= lim

x→x0

x − x0
y − y0

= lim
y→y0

x − x0
y − y0

= ( f −1)′(y0).

�

Example 5.25 The logarithm is defined as the inverse of the exponential function. For 
.x ≥ 0 it is evident that .ex > 0 from the power series expansion, and it then follows from 
the addition formula (2.11) that .ex is strictly positive for all . x . By  (5.10) the derivative is 
strictly positive, and so Theorem 5.24 gives us an inverse function .log : (0, ∞) → R such 
that 

. y = ex ⇐⇒ x = log y.

The inverse formula for the derivative reduces in this case to 

.
d

dy
log y = 1

ex
= 1

y
. (5.21) 

♦ 

Now that the logarithm has been introduced, we can provide the proof of Young’s inequal-
ity, which was claimed in (3.5). For .p, q > 1 such that .1/p + 1/q = 1, 

.xy ≤ x p

p
+ xq

q
(5.22) 

for all .x, y > 0. Recall that the exponential function was shown to be convex in Exam-
ple 5.16. Using the relation between . p and . q to interpolate, the convexity inequality (5.12) 
gives 

. 
1

p
ea + 1

q
eb ≤ exp

(
a

p
+ b

q

)
.

for all .a, b ∈ R. If we set .a = p log x and .b = q log y then this reduces to (5.22).



86 5 Real Functions

5.3.1 Taylor Approximation 

Another important application of the mean value theorem is Taylor’s theorem on the approx-
imation of a differentiable function by polynomials. The coefficients of these polynomials 
agree with the power series formula (5.18), but the Taylor approximation does not require 
a full power series expansion. 

Theorem 5.26 (Taylor approximation) Suppose . f is a .Cm function defined in a neighbor-
hood of . x0, and define the polynomial 

. pm(x) :=
m∑

k=0

1

k! f
(k)(x0)(x − x0)

k .

Then, as .x → x0, 
. f (x) = pm(x) + o(|x − x0|m).

Proof Set 
. g(x) = f (x) − pm(x),

so that .g(k)(x0) = 0 for .k = 0, . . . ,m. The mean value theorem applied to . g(x) − g(x0)
gives .x1 between .x0 and . x so that 

. g(x) = g′(x1)(x − x0).

Then the mean value theorem for .g′(x1) − g′(x0) gives .x2 between .x0 and .x1 so that 

. g′(x1) = g′′(x2)(x1 − x0),

and so on. After continuing this process, we obtain .x1, . . . , xm such that 

. g(n−1)(xn−1) = g(n)(xn)(xn−1 − x0).

Combining all these expressions gives 

. g(x) = g(m)(xm)(x − x0)(x1 − x0) . . . (xn−1 − x0).

Since the points all lie between . x and . x0, we have the bound 

. |g(x)| ≤ |g(m)(xm)||x − x0|m .

Finally, the assumption that .g(m) is continuous implies that .g(m)(xm) → 0 as .x → 0, since  
.xm lies between .x0 and . x . This proves that 

. lim
x→x0

|g(x)|
|x − x0|m = 0
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which is the claimed result. �

We can improve the error estimate in Taylor’s approximation if we have one extra deriva-
tive. For the .m = 0 case this improvement is seen in the original mean value theorem. If . f
is differentiable in neighborhood of . x0, then by Theorem 5.22 

. f (x) = f (x0) + f ′(t)(x − x0),

for some. t between.x0 and. x . If. f ′ is bounded near. x0, then this gives an error term.O(x − x0), 
whereas Theorem 5.26 gives only.o(1). This idea can be extended to higher derivatives. Here 
for example is the quadratic statement. 

Theorem 5.27 Suppose that. f is twice differentiable on an open interval. I . Given.x, x0 ∈ I , 

. f (x) = f (x0) + f ′(x0)(x − x0) + 1

2
f ′′(t)(x − x0)

2 (5.23) 

for some . t between .x0 and . x. 

Proof Let .p1(t) = f (x0) + f ′(x0)(t − x0) and set 

. c = f (x) − p1(x)

(x − x0)2
.

Then the function 
. g(t) := f (t) − p1(t) − c(t − x0)

2

satisfies .g(x) = g(x0) = 0 as well as .g′(x0) = 0. The mean value theorem gives a point . x1
between.x0 and. x such that .g′(x1) = 0. Applying it again gives a point . t between.x0 and. x1
such that .g′′(t) = 0. Since  

. g′′(t) = f ′′(t) − 2c,

this proves (5.23). �

The quadratic error term in Theorem 5.27 yields an immediate converse to the result of 
Exercise 5.18. That is,  if . f ′′ > 0 at all points of an interval . I , then  (5.23) gives  

. f (x) ≥ f (x0) + f ′(x0)(x − x0)

for all .x, x0 ∈ I . This implies that . f is convex by Exercise 5.15.
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5.3.2 L’Hôpital’s Rule 

Limits of ratios of functions may have an indeterminate form, where the ratio appears to 
approach .0/0 or .∞/∞. L’Hôpital’s rule gives an effective tool for evaluating such limits. 
The result can be applied to a variety of situations. The proof uses a more general version 
of the mean value theorem, which we state first as a lemma. 

Lemma 5.28 Suppose . f and . g are continuous functions .[a, b] → R which are differen-
tiable on .(a, b). There exists .t ∈ (a, b) such that 

. [ f (b) − f (a)]g′(t) = [g(b) − g(a)] f ′(t).

Proof We set 
. h(x) := [ f (b) − f (a)]g(t) − [g(b) − g(a)] f (t),

so that .h(a) = h(b). Theorem 5.22 then implies that .h′(t) = 0 for some.t ∈ (a, b). �

Theorem 5.29 Suppose . f and . g are real differentiable functions on the interval .(a, ∞), 
with .g′(x) 
= 0 for all .x > a. If . f (x) → 0 and .g(x) → 0 as .x → ∞, and the limit 

. lim
x→∞

f ′(x)
g′(x)

= α (5.24) 

exists with .α ∈ R∞, then 

. lim
x→∞

f (x)

g(x)
= α.

Proof Since.g′ 
= 0, the function. g is strictly monotonic by Theorem 5.24, and  so. g(x) → 0
as .x → ∞ implies .g(x) 
= 0 for all .x > a. 

Suppose.α < ∞ and. c be a real number with.c > α. By the hypothesis (5.24) there exists 
.m > a so that 

.
f ′(t)
g′(t)

< c for t > m. (5.25) 

For .y > x > a, since  . g is strictly monotonic, the result of Lemma 5.28 can be rearranged 
to give 

. 
f (x) − f (y)

g(x) − g(y)
= f ′(t)

g′(t)
for some.t ∈ (x, y). Thus, by (5.25), 

. 
f (x) − f (y)

g(x) − g(y)
< c for all y > x > m.

Taking .y → ∞ gives
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. 
f (x)

g(x)
< c for all x > m,

since. f (y) → 0,.g(y) → 0, and.g(x) 
= 0. Since.c > αwas arbitrary, we can conclude from 
this that 

. lim sup
x→∞

f (x)

g(x)
≤ α. (5.26) 

We assumed.α < ∞ for the derivation, but (5.26) obviously still holds by default if.α = ∞. 
With the same strategy, by taking .c < α we can argue that 

. lim inf
x→∞

f (x)

g(x)
≥ α,

and this completes the proof. �

Other forms of l’Hôpital’s rule can be deduced from Theorem 5.29. For example, we can 
switch the limit to .x → 0. 

Corollary 5.30 Suppose . f and . g are real differentiable functions on the interval .(0, b), 
with .g′(x) 
= 0 for all .x ∈ (0, b). If . f (x) → 0 and .g(x) → 0 as .x → 0, and the limit 

. lim
x→0

f ′(x)
g′(x)

= α

exists with .α ∈ R∞, then 

. lim
x→0

f (x)

g(x)
= α.

Proof Define .h1(y) = f (1/y) and .h2(y) = g(1/y). Then by the chain rule, 

. 
h′
1(y)

h′
2(y)

= f ′(1/y)
g′(1/y)

.

The limit of this ratio as .y → ∞ is . α, and so Theorem 5.29 gives 

. lim
y→∞

f (1/y)

g(1/y)
= α.

�

The.∞/∞ case can be handled the same way, by applying Theorem 5.29 to the functions 
.1/ f and .1/g.
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5.4 Integration 

In this section we will consider the standard Riemann definition of the integral for a bounded 
function on a closed interval. We will generally restrict our attention to continuous functions, 
which is sufficient for the applications we can develop here. The full generalization of the 
concept of integrability requires the Lebesgue measure theory, which lies beyond the scope 
of this text. 

A partition of a bounded interval .[a, b] is a finite set of points .P = {x0, . . . , xn} with 

. a = x0 ≤ x1 ≤ · · · ≤ xn = b.

For . f : [a, b] → R bounded, we can associate to .P the upper sum 

. S+( f , P) :=
n∑

j=1

(x j − x j−1) sup
[x j−1,x j ]

f

and lower sum 

. S−( f , P) :=
n∑

j=1

(x j − x j−1) inf[x j−1,x j ]
f ,

as illustrated in Fig. 5.5. It is clear from the definitions that 

. S−( f , P) ≤ S+( f , P).

A bounded function . f is Riemann integrable if 

. inf
P

S+( f , P) = sup
P

S−( f , P),

and .
∫ b
a f is defined as this common value. When there is a need to indicate the integration 

variable, we write this as 

. 

∫ b

a
f =

∫ b

a
f (x) dx .

A partition.P2 is called a refinement of .P1 if .P1 ⊂ P2. In other words, .P2 contains all of 
the break points of .P1, plus a finite number of new subdivisions. 

Lemma 5.31 If .P2 is a refinement of .P1, then 

. S+( f , P2) ≤ S+( f , P1), S−( f , P2) ≥ S−( f , P1).

Proof Since .P2 differs from.P1 by finitely many points, it suffices to consider the addition 
of a single point. Suppose.P1 = {x1, . . . , xn} and.P2 = P1 ∪ {y} where.c ∈ (x j , x j+1). The  
supremum of. f over either subinterval of .[x j , x j+1] is less than the supremum over the full 
interval. This implies
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Fig. 5.5 The upper and lower 
sums correspond to 
approximation by step 
functions 

. (c − x j ) sup
[x j ,c]

f + (x j+1 − c) sup
[c,x j+1]

f ≤ (x j+1 − x j ) sup
[x j ,x j+1]

f ,

which shows that .S+( f , P2) ≤ S+( f , P1). A similar argument applies to .S−. �

Two partitions .P1 and .P2 have a common refinement given by 

. P = P1 ∪ P2.

Lemma 5.31 allows us to deduce that 

. S+( f , P1) ≥ S−( f , P2)

for any partitions.P1,.P2. Taking the infimum over.P1 and the supremum over.P2 then shows 
that 

. inf
P

S+( f , P) ≥ sup
P

S−( f , P). (5.27) 

Theorem 5.32 A continuous function . f : [a, b] → R is Riemann integrable. 

Proof Let .Pn denote the regular partition with 

. x j = a + b − a

n
j .

Since .[a, b] is compact, . f is uniformly continuous by Exercise 4.17. Hence, given . ε > 0
there exists .δ > 0 so that 

. | f (x) − f (y)| < ε, for |x − y| < δ.

Thus, for .n > (b − a)/δ, the sup and inf of . f on each interval of .Pn differ by at most . ε. 
This implies that 

.S+( f , Pn) − S−( f , Pn) ≤ (b − a)ε,
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which gives 
. inf
P

S+( f , P) − sup
P

S−( f , P) ≤ (b − a)ε.

Since the left side is positive, by (5.27), and . ε was arbitrary, we conclude that 

. inf
P

S+( f , P) = sup
P

S−( f , P)

�

It is easy to adapt the proof of Theorem 5.32 to allow . f to have finitely many points of 
discontinuity, and in fact the result can be improved even further. However, the strongest 
generalization requires the Lebesgue definition of the integral via measure theory, which we 
will not get into here. 

Some basic properties of the Riemann integral follow immediately from the definition. 
The most fundamental of these is linearity. For any partition .P and .c ≥ 0 it is clear that 

. S±(c f , P) = cS±( f , P),

while for .c < 0 the right side would be .cS∓( f , P). It follows that 

. 

∫ b

a
c f = c

∫ b

a
f

for .c ∈ R. In conjunction with the following result, this shows that integration is a linear 
operation. 

Lemma 5.33 If . f1 and . f2 are integrable functions on .[a, b], then so is . f1 + f2, with 

. 

∫ b

a
( f1 + f2) =

∫ b

a
f1 +

∫ b

a
f2.

Proof For any partition .P the triangle inequality implies that 

. S−( f1, P) + S−( f2, P) ≤ S+( f1 + f2, P)

and 
. S+( f1 + f2, P) ≤ S+( f1, P) + S+( f2, P).

Given .ε > 0 we can find a partition .P such that 

. S+( f j , P) − S−( f j , P) ≤ ε

for . j = 1, 2, by taking a common refinement of the partitions for each function. For this . P
we have
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. S−( f1 + f2, P) ≥
∫ b

a
f1 +

∫ b

a
f2 − 2ε

and 

. S+( f1 + f2, P) ≤
∫ b

a
f1 +

∫ b

a
f2 + 2ε.

Since . ε was arbitrary, we conclude that . f1 + f2 is integrable and 

.

∫ b

a
( f1 + f2) =

∫ b

a
f1 +

∫ b

a
f2.

�

Another basic but important property is the concatenation of integrals over adjacent 
intervals. We will omit the very straightforward proof. 

Lemma 5.34 Suppose that . f is integrable on .[a, b]. For .a < c < b, 

. 

∫ b

a
f =

∫ c

a
f +

∫ b

c
f .

Because of this additive property, it makes sense to define, for .a < b, 

. 

∫ a

b
f := −

∫ b

a
f .

The final property we wish to highlight is positivity. If. f is a positive function then clearly 
the sums .S±( f , P) are positive for any partition . P . Therefore, assuming integrability, 

. f ≥ 0 on [a, b] =⇒
∫ b

a
f ≥ 0. (5.28) 

The combination of linearity and positivity implies the monotonicity of the integral: 

. f ≤ g on [a, b] =⇒
∫ b

a
f ≤

∫ b

a
g. (5.29) 

Since .± f ≤ | f |, monotonicity yields the basic integral estimate: 

.

∣
∣∣
∣

∫ b

a
f

∣
∣∣
∣ ≤

∫ b

a
| f |. (5.30) 

Since . f is bounded, we can extract its estimate from the integral to obtain 

.

∣∣
∣∣

∫ b

a
f

∣∣
∣∣ ≤ (b − a) sup

x∈[a,b]
| f (x)|. (5.31)
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Exercise 5.35 Suppose that . fn is integrable on .[a, b] for each . n and . fn → f uniformly. 
Prove that . f is integrable and 

. lim
n→∞

∫ b

a
fn =

∫ b

a
f .

Exercise 5.36 Let .V be the vector space of continuous functions .[0, 1] → R and define 

. ‖ f ‖ :=
∫ b

a
| f |

for . f ∈ V . Show that .‖·‖ defines a norm on . V . 

5.4.1 Fundamental Theorem of Calculus 

The fundamental theorem says that differentiation and integration are inverse operations, 
in a certain sense. There are two parts to the statement, depending on the order of the 
operations. First, we consider differentiation of the integral. 

Theorem 5.37 Suppose that . f is Riemann integrable on the interval .[a, b]. The function 

. F(x) :=
∫ x

a
f

is Lipschitz continuous on .[a, b]. If . f is continuous at a point . x then .F is differentiable at 
. x with 

. F ′(x) = f (x).

Proof For .x, y ∈ [a, b], Lemma 5.34 implies that 

.F(y) − F(x) =
∫ y

x
f . (5.32) 

Lipschitz continuity then follows from the estimate (5.30) which gives 

. |F(y) − F(x)| ≤ M |y − x |,

where .M = sup[a,b]| f |. (.M is finite under the assumption that . f is Riemann integrable.) 
Now assume that . f is continuous at . x . By (5.32) we can write 

. 
F(x + t) − F(x)

t
− f (x) = 1

t

∫ x+t

x
[ f (y) − f (x)] dy.

Applying (5.30) gives the estimate
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. 

∣
∣∣
∣
F(x + t) − F(x)

t
− f (x)

∣
∣∣
∣ ≤ sup

y∈[x,x+t]
| f (y)|

assuming.x + t ∈ [a, b]. Continuity implies that the right-hand side is.o(1) as.t → 0, which  
proves that .F ′(x) exists and equals . f (x). �

The second part of the fundamental theorem involves integration of the derivative. 

Theorem 5.38 Suppose . f is differentiable on .[a, b] and . f ′ is integrable. Then 

. 

∫ b

a
f ′ = f (b) − f (a).

Proof Given a partition.P = {x0, . . . , xn}, applying the mean value theorem to each subin-
terval gives .t j ∈ (x j−1, x j ) such that 

. f (x j ) − f (x j−1) = f ′(t j )(x j − x j−1).

Summing over . j then gives 

. f (b) − f (a) =
n∑

j=1

f ′(t j )(x j − x j−1).

This shows that 
. S−( f ′, P) ≤ f (b) − f (a) ≤ S+( f ′, P).

If . f is integrable then taking the supremum over .P in the first inequality and the infimum 
in the second proves the result. �

Exercise 5.39 Let . fn be a .C1 function on the interval .[a, b] for each .n ∈ N. Suppose that 
there are functions . f , . g such that . fn → f pointwise and . f ′

n → g uniformly. Prove that . f
is .C1 and . f ′ = g. 

5.5 Picard Iteration 

In this final section we will illustrate how metric space tools can be applied to establish the 
existence of solutions of an ordinary differential equation. The proof involves a iteration 
technique introduced by Émile Picard in 1893.
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Fig. 5.6 A continuous slope 
field.F(t, u) with a possible 
solution of the corresponding 
differential equation 

On an interval .I ⊂ R we consider an equation of the form 

.u′(t) = F(t, u(t)), u(t0) = u0 (5.33) 

where.F is a continuous function.I × R → R and.t0 ∈ I . We could picture this by using. F
to define a slope field, as shown in Fig. 5.6. The graph of a solution.(t, u(t))must be parallel 
to the slope field at each point of the curve. 

To solve (5.33) we will use a corresponding integral equation. Under the assumption that 
.F is continuous, the two parts of the fundamental theorem of calculus immediately yield 
the following: 

Lemma 5.40 If .u : I → R is a continuous function satisfying 

.u(t) = u0 +
∫ t

t0
F(s, u(s)) ds, (5.34) 

then . u is .C1 and satisfies (5.33). Conversely, if . u is a .C1 solution of (5.33), then . u satisfies 
(5.34). 

The strategy to solve (5.34) is to think of the right-hand side as the image of a map 
.u �→ Tu given by 

.Tu(t) := u0 +
∫ t

t0
F(u(s), s) ds. (5.35) 

A solution of (5.34) is a fixed point for which .u = Tu. Our goal is use the fixed point 
theorem introduced in Exercise 4.19 to show that a solution exists and is unique. 

Some additional assumption on the function .F beyond continuity is required for this 
result to be true. For example, if .I = R and 

.F(u, t) = 2|u|1/2,
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Fig. 5.7 A continuous slope 
field.F(t, u) with multiple 
solutions passing through the 
same point 

Then for .u0 = 0 and .t0 = 0 we have four possible .C1 solutions, with .u(t) given by either 
. 0 or .t2 for . t positive and . 0 or .−t2 for . t negative. This failure of uniqueness is illustrated in 
Fig. 5.7. 

Another issue to keep in mind is that solutions may not exist for all times. For example, 
let.F(t, u) = −u2. For.u0 = 1/c > 0 and.t0 = 0, the equation has a unique solution. u(t) =
(c − t)−1, which blows up as .t → c. 

The metric space on which we will frame this contraction argument is.C(J ; K ), the space 
of continuous maps .J → K where . J and .K are compact intervals in . R. Since  .C(J ;C) is 
complete with respect to the max-norm topology by Exercise 4.23 and.C(J ; K ) is a closed 
subspace, .C(J ; K ) is complete. 

Theorem 5.41 (Picard) Let .F : I × R → R be continuous, where . I is a compact interval. 
For .u0 ∈ R and .r > 0, suppose there exists .c > 0 so that .F satisfies the Lipschitz condition 

. |F(t, u) − F(t, v)| ≤ c|u − v|

for .u, v ∈ [u0 − r , u0 + r ] and .t ∈ I . Then for .t0 ∈ I there exists a compact interval . J ⊂ I
containing . t0 such that the equation (5.33) admits a unique solution for .t ∈ J . 

Proof Given .u0 and . t0, let  .T be the map (5.35) and set .K = [u0 − r , u0 + r ]. For some  
.a > 0 to be chosen later we set 

. J = [t0 − a, t0 + a] ∩ I .

For .u ∈ C(J ; K ), the integral estimate (5.30) gives  

.|Tu(t) − u0| ≤ M |t − t0|, (5.36) 

where 
.M := sup

J×K
|F(·, ·)|,
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which is finite because .F is continuous and .J × K is compact. Thus, (5.36) implies that 
.Tu(t) ∈ K for.|t − t0| ≤ r/M . Since.Tu is continuous, this shows that. T maps.C(J ; K ) to 
itself provided .a < r/M . 

For .u, v ∈ C(J ; K ) the Lipschitz assumption on .F implies that 

. 

|Tu(t) − T v(t)| ≤
∫ t

t0
|F(u(s), s) − F(v(s), s)| ds

≤ c
∫ t

t0
|u(s) − v(s)| ds.

With . t restricted to . J this gives 

. ‖Tu − T v‖max ≤ ca‖u − v‖max.

Thus, if we assume that.a < 1/c in addition to.a < r/M , then. T is a contraction on.C(J ; K ). 
By Exercise 4.19, there exists a unique function.u ∈ C(J ; K ) such that .Tu = u, and hence 
a unique solution of (5.33) for .t ∈ J . �
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